Tính diện tích hình thang vuông, biết hai đáy có độ dài là 2cm, 4cm, góc tạo bởi một cạnh bên và đáy lớn có số đo bằng 45o.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hình thang vuông ABCD có:
∠ A = ∠ D = 90 0 ; ∠ C = 45 0
Kẻ BE ⊥ CD
Tam giác vuông BEC có ∠ (BEC) = 90 0 cân tại E ⇒ BE = EC
Hình thang ABCD có hai cạnh bên AD // BE (vì cùng vuông góc với DC) ⇒ DE = AB = 2cm
EC = DC – DE = 4 – 2 = 2 (cm) ⇒ BE = 2cm ( vì tam giác BEC là tam giác vuông cân).
SABCD = 1/2 .BE(AB+ CD) = 1/2 .2.(2 + 4) = 6 ( c m 2 )
Hạ đường cao CE thì EB = AB - AE = AB - DC = 4 - 2 =2.
Tam giác vuông EBC có góc B = 45 độ nên nó là tam giác vuông cân. Suy ra CE = EB = 2.
\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.CE=\dfrac{4+2}{2}.2=6\left(cm^2\right)\)
Bài này có 2 cách nhưng mình chỉ giải 1 cách thôi,không biết có đúng không nhé!(Cho phép mình đặt tên các đỉnh)
Kẻ BE//AD =>Tam giác BEC là tam giác vuông.Vì góc BCE = 45 độ
=> Góc CBE= 45 độ =>Tam giác BEC vuông cân.=> BE=EC=DC-DE=9-6=3.
Diện tích của hình thang là:(a+b)*h:2=(AB+CD)*BE:2=(6+9)*3:2=45:2=22.5(cm vuông)
Giả sử hình thang ABCD (AB // CD) có AB = 7cm, BC = 10cm, CD = 11cm và
Kẻ BH ⊥ CD (H ∈ CD) Tam giác BHC vuông tại H lại có ∠C = 30o nên tam giác BHC là nửa tam giác đều. Suy ra
Diện tích hình thang ABCD là:
1/
Kẻ AH \(\perp\)CD , \(BK\perp CD\)
Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK
=> tam giác AHD = tam giác BKC (gcg)
=> DH = KC
Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)
Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)
=> x = 1/2 hay DH = KC = 1/2
Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)
Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)
Vậy AB = 1,7m
2/
a/ Cm: tam giác ICD đều:
Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D
=> ID = DC (1)
=> DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)
Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị)
mà góc IDC = góc ICD
=> góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm
=> ID = IA + AD = 4 + 4 = 8cm (3)
Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều
b/ Tính chu vi hình thang ABCD:
Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm
ID = DC = 8cm
Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)
Xét hình thang vuông ABCD có: ˆA=ˆD=900;ˆC=450A^=D^=900;C^=450
Kẻ BE ⊥ CD
Trong tam giác vuông BEC có ˆBEC=900BEC^=900
ˆC=45∘⇒C^=45∘⇒∆ BEC vuông cân tại E
⇒ BE = EC
Hình thang ABED có hai cạnh bên AD // BE (vì cùng vuông góc với DC)
⇒ DE = AB = 2cm
EC = DC – DE = 4 – 2 = 2 (cm) ⇒ BE = 2cm
SABCD=1/2.BE(AB+CD)=1/2.2.(2+4)=6(cm2)
Trl
-Bạn kia làm đúng rồi !~
Học tốt
nhé bạn :>