Cho (O) tiếp xúc với 2 cạnh Ax, Ay của góc xAy lần lượt tại B và C. Vẽ dây CD//Ax. Tia AD cắt dường tròn tại M, CM cắt AB tại N. Chứng minh:
a)Tam giác ANC đồng dạng tam giác MNA.
b) AN = BN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.xét tam giác ANC và tam giác MNA, có:
N: góc chung
góc MAN = góc ACN
=> tam giác ANC đồng dạng tam giác MNA ( g.g )
b.ta có:
\(\dfrac{AN}{MN}=\dfrac{NC}{AN}\) ( tỉ số đồng dạng )
\(\Rightarrow AN^2=MN.NC\)
ta lại có: tam giác BCN đồng dạng tam giác MBN
\(\Rightarrow BN^2=MN.NC\)
=> AN = BN
Akai HarumaNguyễn Huy ThắngNguyễn Việt LâmLê Anh DuyUnruly KidDƯƠNG PHAN KHÁNH DƯƠNGAce LegonaYNguyễn Huy TúNguyễn Thanh HằngMashiro ShiinaMysterious Personsoyeon_Tiểubàng giảiVõ Đông Anh TuấnPhương AnTrần Việt LinhArakawa WhiterLê Mỹ Linh
a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có
\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)
Do đó: ΔACI~ΔBHI
b: Ta có: ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=25^2-15^2=400\)
=>\(CB=\sqrt{400}=20\left(cm\right)\)
Xét ΔABC có AI là phân giác
nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)
=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)
=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)
mà CI+BI=CB=20cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)
=>\(CI=2,5\cdot3=7,5\left(cm\right)\)
c: Ta có: ΔACI~ΔBHI
=>\(\widehat{CAI}=\widehat{HBI}\)
mà \(\widehat{CAI}=\widehat{BAH}\)
nên \(\widehat{HBI}=\widehat{HAB}\)
Xét ΔHBI vuông tại H và ΔHAB vuông tại H có
\(\widehat{HBI}=\widehat{HAB}\)
Do đó: ΔHBI~ΔHAB
=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)
=>\(HB^2=HI\cdot HA\)