K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2021

ĐKXĐ: \(x>\dfrac{1}{5}\)

\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)

\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)

\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)

\(\Leftrightarrow\sqrt{5x-1}>1-3x\)

TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)

TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)

Kết luận: \(x>\dfrac{2}{9}\)

21 tháng 2 2022

`Answer:`

ĐK: `x^3-1>=0`

`<=>(x-1)(x^2+x+1)>0`

`<=>x>=1`

PT tương đương: `2.(x^2+x+1)+3(x-1)=7\sqrt{(x^2+x+1)(x-1)}`

Đặt `a=\sqrt{x^2+x+1}<=>a^2=x^2+x+1;b=\sqrt{x-1}<=>b^2=x-1`

PT tương đương: `2a^2+3b^2=7ab`

`<=>2a^2-7ab+3b^2=0`

`<=>2a^2-ab-6ab+3b^2=0`

`<=>a(2a-b)-3b(2a-1)=0`

`<=>(2a-b)(a-3b)=0`

`<=>2a=b` hoặc `a=3b`

Với `2a=b:`

`2\sqrt{x^2+x+1}=3\sqrt{x-1}`

`<=>4(x^2+x+1)=9(x-1)`

`<=>4x^2-5x+13=0`

`\Delta=5^2-4.4.13<0`

Vậy phương trình vô  nghiệm.

Với `a=3b:`

`\sqrt{x^2+x+1}=3\sqrt{x-1}`

`<=>x^2+x+1=9(x-1)`

`<=>x^2-8x+10=0`

`\Delta'=4^2-10=6`

`<=>x=4+-\sqrt{6}`

Vậy phương trình cố  nghiệm là `x=4+-\sqrt{6}`

`

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

13 tháng 8 2018

8x + 3(x + 1) > 5x – (2x – 6)

⇔ 8x + 3x + 3 > 5x – 2x + 6

⇔ 8x + 3x – 5x + 2x > 6 – 3 (Chuyển vế, đổi dấu)

⇔ 8x > 3

⇔ Giải bài tập Vật lý lớp 10 (Chia cả hai vế cho 8 > 0, BPT không đổi chiều)

Vậy bất phương trình có nghiệm Giải bài tập Vật lý lớp 10

21 tháng 1 2019

a) |3x| = x + 6 (1)

Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0

Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:

+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0

Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)

Do đó x = 3 là nghiệm của phương trình (1).

+ ) Phương trình -3x = x + 6 với điều kiện x < 0

Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)

Do đó x = -3/2 là nghiệm của phương trình (1).

Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}

ĐKXĐ: x ≠ 0, x ≠ 2

Quy đồng mẫu hai vễ của phương trình, ta được:

Vậy tập nghiệm của phương trình là S = {-1}

c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

NV
13 tháng 1 2021

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)

\(\Leftrightarrow x-1\le0\)

\(\Rightarrow\dfrac{1}{5}\le x\le1\)

27 tháng 2 2021
Tự giải . ko làm mà đòi có ăn thì chỉ ăn cái đó
28 tháng 7 2018

Ta có: (x + 4)(5x – 1) > 5 x 2  + 16x + 2

       ⇔ 5 x 2  – x + 20x – 4 > 5 x 2  + 16x + 2

       ⇔ 5 x 2  – x + 20x – 5 x 2  – 16x > 2 + 4

       ⇔ 3x > 6

       ⇔ x > 2

Vậy tập nghiệm của bất phương trình là S = {x|x > 2}