K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

cách 1: \(\sqrt{x^2+6x+9}=\sqrt{x^2-10x+25}\)

\(\Leftrightarrow x^2+6x+9=x^2-10x+25\)

\(\Leftrightarrow16x=16\Leftrightarrow x=1\)

vậy x=1 là nghiêm của pt

c2: \(\sqrt{x^2+6x+9}=\sqrt{x^2-10x+25}\)

\(\Leftrightarrow\left|x+3\right|=\left|x-5\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=x-5\\x+3=5-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3=-5\left(vl\right)\\x=1\end{matrix}\right.\)

vậy x=1 là nghiệm của pt

NV
10 tháng 7 2020

\(p+q=0\Rightarrow q=-p\)

\(\Rightarrow x^2+px-p=0\) (1)

Do nghiệm pt là nguyên nên delta là SCP hay \(\Delta=p^2+4p=k^2\)

\(\Leftrightarrow\left(p+2\right)^2-4=k^2\Rightarrow\left(p+2\right)^2-k^2=4\)

\(\Rightarrow\left(p+2-k\right)\left(p+2+k\right)=4\)

Pt ước số cơ bản, bạn tự tính p sau đó thay vào (1) giải ra x, cái nào nguyên thì nhận

b/ \(\Leftrightarrow\sqrt{\left(3-x\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

\(\Leftrightarrow\left|3-x\right|+\left|x+5\right|=8\)

Mặt khác ta có \(\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(\left(3-x\right)\left(x+5\right)\ge0\)

\(\Rightarrow-5\le x\le3\)

\(\Rightarrow\) Nghiệm của pt đã cho là \(-5\le x\le3\)

b) Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\)(*)

Trường hợp 1: x<-5

(*)\(\Leftrightarrow3-x-x-5=8\)

\(\Leftrightarrow-2-2x=8\)

\(\Leftrightarrow-2\left(1+x\right)=8\)

\(\Leftrightarrow1+x=-4\)

hay x=-5(loại)

Trường hợp 2: -5≤x≤3

(*)\(\Leftrightarrow3-x+x+5=8\)

\(\Leftrightarrow8=8\)

hay x∈[-5;3]

Trường hợp 2: x>3

(*)\(\Leftrightarrow x-3+x+5=8\)

\(\Leftrightarrow2x+2=8\)

\(\Leftrightarrow2x=6\)

hay x=3(loại)

Vậy: S=[-5;3]

1 tháng 9 2015

Câu 1.  Ta có phương trình tương đương với  \(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\leftrightarrow\left|3-x\right|+\left|x+5\right|=8\). Nhớ lại rằng ta luôn có \(\left|A\right|+\left|B\right|\ge\left|A+B\right|,\) với dấu bằng xảy ra khi và chỉ khi \(A\cdot B\ge0\),

Mà \(8=\left(3-x\right)+\left(x+5\right)\to\left(3-x\right)\left(x+5\right)\ge0\leftrightarrow\left(x-3\right)\left(x+5\right)\le0\leftrightarrow-5\le x\le3.\)

Vậy đáp số là \(-5\le x\le3.\)

Câu 2.  Ta có

\(VT=y^2-2y+3=\left(y-1\right)^2+2\ge2,VP=\frac{6}{x^2+2x+4}=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\to VP\le VT\)

Do đó để \(VT=VP\) thì các dấu bằng phải xảy ra, ta suy ra ngay \(y=1,x=-1.\)  (Ở đây ta kí hiệu VT là vế trái, VP là vế phải). ĐPCM

24 tháng 7 2017

=>\(\sqrt{\left(x+3\right)^2}\)\(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x

=> x + 3 + x + 4 + x + 5 = 9x

=> - 6x = - 12

=> x=2

25 tháng 7 2017

Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a ) 

28 tháng 9 2017

a)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)

\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)

Vậy pt có một nghiệm duy nhất là \(x=-1\)

b)

\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)

Lập bảng xét dấu ra nhé ~^o^~

10 tháng 12 2018

Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

\(\Rightarrow x-3+x+5=8\)

\(\Rightarrow2x=6\Rightarrow x=3\)

10 tháng 12 2018

\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\) (1)

Nếu \(x< -5\) thì (1) trở thành: 

      \(3-x+\left(-x-5\right)=8\Leftrightarrow-2x-2=8\Leftrightarrow x=-5\) (loại)

-Nếu \(-5\le x< 3\) thì (1) trở thành:

       \(3-x+x+5=8\Leftrightarrow8=8\)

-Nếu \(x>3\) thì (1) trở thành: 

        \(x-3+x+5=8\Leftrightarrow2x+2=8\Leftrightarrow x=3\) (thỏa mãn)

Vậy \(-5\le x\le3\)

11 tháng 7 2023

1, \(\sqrt{4-4x+x^2}=3\)

\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)

\(\Leftrightarrow\left|2+x\right|=3\)

TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)

Pt trở thành:

\(2-x=3\) (ĐK: \(x\le2\) )

\(\Leftrightarrow x=2-3\)

\(\Leftrightarrow x=-1\left(tm\right)\)

TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)

Pt trở thành:

\(-\left(2-x\right)=3\) (ĐK: \(x>2\))

\(\Leftrightarrow-2+x=3\)

\(\Leftrightarrow x=3+2\)

\(\Leftrightarrow x=5\left(tm\right)\)

Vậy \(S=\left\{-1;5\right\}\)

11 tháng 7 2023

Bài 1 sai dấu em ơi

13 tháng 9 2023

Thiếu soát gì mog bạn thông cảm :]

loading...

loading...

17 tháng 9 2023

a chj Lê quay lại gòi :DDD

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4