cho x/y=7/10;y/z=5/8 và 2x-y+3z=104 tìm x;y;z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-y)(x^2+y^2)(x^3-y^3)
=7[(x-y)^2+2xy][(x-y)^3+3xy(x-y)]
=7(7^2+20)(7^3+30.7)
=7.(49+20)(343+210)
=7.69.553
=267099
cho mk nha ツ
Ta có:
\(\text{x + y = 10 }\)(1)
\(\frac{x-3}{y+7}=\frac{3}{4}\)(2)
Từ (2) suy ra: \(4\left(x-3\right)=3\left(y+7\right)\)
=> \(4x-12=3y+21\)
=> \(4x=3y+21+12\)
=> \(4x=3y+33\)
=> \(4x-3y=33\)(3)
Lấy (3) - 4.(1), vế theo vế, ta có:
\(4x-3y-4\left(x+y\right)=33-4.10\)
=> \(4x-3y-4x-4y=33-40\)
=> \(\left(4x-4x\right)+\left(-3y-4y\right)=-7\)
=> \(-7y=-7\)
=> \(y=1\)
Thế y = 1 vào (1), ta có:
\(x+1=10\)
=> \(x=9\)
x+y=7
=>(x+y)3-3xy(x+y)=73-3.10.7
<=>x3+3x2y+3xy2+y3-3x2y-3xy2=133
<=>x3+y3=133
=>(x-y)3+3xy(x-y)
=x3-3x2y+3xy2-y3+3x2y-3xy2
=x3-y3
*)Với x-y=3=>x3-y3=(x-y)3+3xy(x-y)=33+3.10.3=117
*))Với x-y=3=>x3-y3=(x-y)3+3xy(x-y)=(-3)3+3.10.(-3)=-117
x + y = 7 => x = 7 - y thay vào x.y ta có:
( 7 -y) y = 10 =>7y - y^2 = 10 => y^2 - 7y + 10 = 0 => y^2 -2y - 5y +10 => y( y-2) - 5 (y - 2) = 0
=> ( y - 5)(y - 2) = 0 => y = 5 hoặc 2 => x = 2 hoặc 5 ( Nếu bạn thêm đk x > y hay y>x chior có một trường hợp thôi)
(+) y = 5 và x = 2
=> x - y = 2- 5 = -5
x^2 + y^2 = 2^2 + 5^2 = 4 + 25 = 29
x^3 + y^3 = 2^3 + 5^3 = 8 + 125 = 133
x^3 - y^3 = 2^3 - 5^3 = 8 -125 = -117
(+) Tương tự x = 5 và y = 2
Mình gợi ý nha:
Bạn tính x từ phép tính 3.x3+7=199 (bằng 4)
Rồi bạn tính (x+10)/7 (bằng 2)
Từ đó ta có y+6=18 và 27-z=22
Tính y;z
Tính x+y+z.
C, CHO 7X=3Y VA X -Y =16
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)
bạn viết lại đề đi đè gì mà sai hết
Ta có:
\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(x^2+y^2+2xy+7x+7y+y^2+10=0\)
\(x^2+y^2+1+2xy+2x+2y+5x+5y+5+4=0\)
\(\left(x+y+1\right)^2+5\left(x+y+1\right)+4=0\)
\(\left(x+y+1\right)^2+\left(x+y+1\right)+4\left(x+y+1\right)+4=0\)
\(\left(x+y+1\right)\left(x+y+2\right)+4\left(x+y+1\right)=0\)
\(\left(x+y+1\right)\left(x+y+6\right)=0\)
- \(x+y=-1\)
- \(x+y=-6\)
Max T=x+y+1=-6+1=-5 <=> x+y=-6
Min T=x+y+1=-1+1=0 <=> x+y=-1
Giải:
\(\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-3}\)
\(\Rightarrow\dfrac{-4}{8}=\dfrac{x}{-10}\)
\(\Rightarrow x=\dfrac{-10.-4}{8}=5\)
\(\Rightarrow\dfrac{-4}{8}=\dfrac{-7}{y}\)
\(\Rightarrow y=\dfrac{-7.8}{-4}=14\)
\(\Rightarrow\dfrac{-4}{8}=\dfrac{z}{-3}\)
\(\Rightarrow z=\dfrac{-4.-3}{8}=\dfrac{3}{2}\)