Cho tam giác MNP có E,F là trung điểm của MP,NP. Gọi G là giao của tia EF với đường tròn ngoại tiếp tam giác MNP.
cmr: MP/NG = MN/GP + NP/GM.
Giups mình nhanh mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) S = 6 x 8 :2 = 24
mà s cũng có thể = MK x 10 : 2 = 24 ( MK là đường cao)
=> MK = 4,8
e) theo py ta go
=> NK = căn 41,24
MK = căn 69,24
g) theo tính chất tam giác vuông
=> MD = ND = DP = 1/2NP = 10 : 2 = 5
h) theo py ta go
=> KD = 5 - căn 41,24 = ...
bài này mik chưa chắc chắn đâu vì mik thấy số lẻ quá nhưng mà 100% cách làm là đúng nhng7 hơi tắt mog bn thông cảm
nhớ
a) tứ giác MEKH co ba góc vuông suy ra là hcn
b)do tam giác MNP có M=900 áp dụng định lý py ta go để làm
c)SMNP =chiều cao nhân cạnh đáy chia hai
d)áp dụng định lý py-ta-go
a/ Xét \(\Delta EFM\)và \(\Delta QFP\)có
\(\hept{\begin{cases}EF=QF\\\widehat{EFM}=\widehat{QFP}\\FM=FP\end{cases}}\)
\(\Rightarrow\Delta EFM=\Delta QFP\)
\(\Rightarrow EM=QP\)
Mà \(EM=NE\Rightarrow NE=QP\)
b/ Từ câu a ta có \(\widehat{EMF}=\widehat{QPF}\)
\(\Rightarrow\widehat{EPQ}=\widehat{EPM}+\widehat{FPQ}=\widehat{EPM}+\widehat{EMF}=\widehat{NEP}\left(1\right)\)
Xét \(\Delta NEP\) và \(\Delta QPE\)có
\(\hept{\begin{cases}EP\left(chung\right)\\NE=QP\\\widehat{NEP}=\widehat{QPE}\end{cases}}\)
\(\Rightarrow\Delta NEP=\Delta QPE\)
c/ Từ câu b/ ta suy ra \(\widehat{NPE}=\widehat{PEQ}\)
=>EF // NP
Lại từ câu b ta có
\(NP=EQ=EF+FQ=2EF\)
\(\Rightarrow EF=\frac{1}{2}NP\)
bài này động đến đường trung bình của tam giác
nếu khó hơn thì học sẽ ko cho trc điểm Q và các câu a và b
a: Xét tứ giác MHKE có
\(\widehat{MHK}=\widehat{MEK}=\widehat{HME}=90^0\)
Do đó: MHKE là hình chữ nhật
b: \(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)
c: \(S_{MNP}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
d: \(MK=\dfrac{MN\cdot MP}{NP}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
e: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{6^2}{10}=3.6\left(cm\right)\\KP=10-3.6=6.4\left(cm\right)\end{matrix}\right.\)
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
??????????????
tự làm dc ngta đã k hỏi
tl kiểu thế nghỉ luôn đi