Chỉ ra các p/t tương đương
a) 3x + 2 = 1 và x + 1 = 2/3
b) x + 2 = 0 và ( x + 2 )( x - 1 ) = 0
c) x + 2 = 0 và ( x + 2 )( x2 + 1 ) = 0
( Cần gấp )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: x^3+x^2-3x-3=0
=>x^2(x+1)-3(x+1)=0
=>(x+1)(x^2-3)=0
=>x=-1 hoặc x^2-3=0
=>\(S_1=\left\{-1;\sqrt{3};-\sqrt{3}\right\}\)
2x+3=1
=>2x=-2
=>x=-1
=>S2={-1}
=>Hai phương trình này không tương đương.
1: \(\dfrac{1}{\left|x+1\right|}+\dfrac{1}{x+2}=3\left(1\right)\)
TH1: x>-1
Pt sẽ là \(\dfrac{1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>3(x+1)(x+2)=2x+3
=>3x^2+9x+6-2x-3=0
=>3x^2+7x+3=0
=>\(\left[{}\begin{matrix}x=\dfrac{-7-\sqrt{13}}{6}\left(loại\right)\\x=\dfrac{-7+\sqrt{13}}{6}\left(nhận\right)\end{matrix}\right.\)
TH2: x<-1
Pt sẽ là:
\(\dfrac{-1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{-x-2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>\(\dfrac{-1}{\left(x+1\right)\left(x+2\right)}=3\)
=>-1=3(x+1)(x+2)
=>3(x^2+3x+2)=-1
=>3x^2+9x+6+1=0
=>3x^2+9x+7=0
Δ=9^2-4*3*7
=81-84=-3<0
=>Phương trình vô nghiệm
Vậy: \(S_3=\left\{\dfrac{-7+\sqrt{13}}{6}\right\}\)
x^2+x=0
=>x(x+1)=0
=>x=0 hoặc x=-1
=>S4={0;-1}
=>S4<>S3
=>Hai phương trình này không tương đương
a) *) x² + 2 = 0
x² = -2 (vô lý)
Vậy S₁ = ∅ (1)
*) x(x² + 2) = 0
x = 0
Vậy S₂ = {0} (2)
Từ (1) và (2) ⇒ hai phương trình đã cho không tương đương
b) *) |x - 1| = 2
x - 1 = 2 hoặc x - 1 = -2
+) x - 1 = 2
x = 3
+) x - 1 = -2
x = -2 + 1
x = -1
Vậy S₃ = {-1; 3}
*) (x + 1)(x - 3) = 0
x + 1 = 0 hoặc x - 3 = 0
+) x + 1 = 0
x = -1 (3)
+) x - 3 = 0
x = 3
Vậy S₄ = {-1; 3} (4)
Từ (3) và (4) ⇒ hai phương trình đã cho tương đương
a) Ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: \(S_1=\left\{3;-1\right\}\)(1)
Ta có: \(\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: \(S_2=\left\{-3;-1\right\}\)(2)
Từ (1) và (2) suy ra \(S_1\ne S_2\)
hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau
e) Ta có: x+1=x
\(\Leftrightarrow x-x=-1\)
hay 0=-1
Vậy: \(S_1=\varnothing\)(1)
Ta có: \(x^2+1=0\)
mà \(x^2+1>0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(S_2=\varnothing\)(2)
Từ (1) và (2) suy ra hai phương trình x+1=x và \(x^2+1=0\) tương đương
Định nghĩa: 2 pt tương đương là hai pt có cùng một tập nghiệm
a) 3x+2=1 =>3x=-1 =>x=-1/3
x+1=2/3 =>x=-1/3
Vậy 3x+2=1 <=> x+1=2/3
b) x+2=0 =>x=-2
(x+2)(x-1)=0 =>\(x^2-x+2x-2=0\) => \(x\left(x-1\right)+2\left(x-1\right)=0\) =>\(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)Vậy 2 pt ko tương đương
câu c bn ko bt lm ak