K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

a) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)

Ta có : \(a+b+c=2\)

\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)

Từ (1) và (2)

\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)

b )  Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)

Tường tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)

\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)\)

\(+4\left(a^2+b^2+c^2\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)

Chúc bạn học tốt !!!

22 tháng 5 2017

ta có BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)(chứng minh = AM-GM)

\(abc\ge\left(2-2a\right)\left(2-2b\right)\left(2-2c\right)=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(abc\ge8\left[1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\right]\)

\(\Leftrightarrow9abc\ge-8+8\left(ab+bc+ca\right)\)

do đó \(VT\ge4\left(a^2+b^2+c^2\right)+8\left(ab+bc+ca\right)-8\)

\(VT\ge4\left(a+b+c\right)^2-8=16-8=8\)

Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)

23 tháng 5 2017

a) Theo bất đẳng thức tam giác ta có

\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) (1)

Ta có \(a+b+c=2\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=2-a\\a+b=2-c\\a+c=2-b\end{matrix}\right.\) (2)

Từ (1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}a< 2-a\\b< 2-b\\c< 2-c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2a< 2\\2b< 2\\2c< 2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a< 1\\b< 1\\c< 1\end{matrix}\right.\) ( đpcm )

b) Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\dfrac{2a}{2}\right)^2=a^2\)

Tượng tự ta có \(\left\{{}\begin{matrix}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)

\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{2}{3}\)

20 tháng 1 2020

a ) Theo bất đẳng thức tam giác ta có :

\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)

Ta có : \(a+b+c=2\)

\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)

Từ (1) và (2) 

\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)

b ) Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)

Tương tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)

\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)

Chúc bạn học tốt !!!

15 tháng 9 2016

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

15 tháng 9 2016

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

6 tháng 9 2017

bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)

A=2a2b2+2b2c2+2a2c2−a4−b4−c4

⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)

⟺A=4a2c2−(a2−b2+c2)2

⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)

⟺A=((a+c)2−b2)(b2−(a−c)2)

⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)

Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)

13 tháng 4 2020

vì a;b;c là độ dài 3 cạnh của 1 tg

\(\Rightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Rightarrow\hept{\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ca>a^2\end{cases}}}\)

\(\Rightarrow ab+bc+ac+ab+bc+ac>a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)              (1)

có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}a^2-2ab+b^2\ge0\\b^2-2bc+c^2\ge0\\c^2-2ac+a^2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}}\)

\(\Rightarrow2ab+2bc+2ac\le2a^2+2b^2+2c^2\)

\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\)                     (2)

\(\left(1\right)\left(2\right)\Rightarrow ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)