Cho x,y>0, thỏa mãn x2+y2=1. Tìm GTNN
M=\(\frac{3x}{y}\) + \(\frac{y}{2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh BĐT phụ:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Giờ thì chứng minh thôi:3
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)
Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)
=> Min P=18
Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)
Thì ta có
\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)
\(\Leftrightarrow b^3+b^2=a^3+a^2\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)
Mà \(\left(b^2+ab+a^2+b+a\right)>0\)
\(\Rightarrow a=b\)
\(\Rightarrow2x+3=y\)
Thế vào Q ta được
\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)
\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)
Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(BĐT Svacxo)
\(\Rightarrow\frac{1}{2}\ge\frac{4}{x+y}\)
\(\Leftrightarrow x+y\ge8\)(1)
Áp dụng BĐT Cauchy cho 2 số không âm:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)
\(\Rightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\)
\(\Leftrightarrow\sqrt{xy}\ge4\)(2)
Từ (1) và (2) suy ra \(x+\sqrt{xy}+y\ge16\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge16\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge4\)
Muốn cô k cũng dễ lắm. Tuy nhiên cái cô muốn là các em làm được bài trên OLM sẽ nhìn ra được những lỗi sai của mình thì để lần sau trong các cuộc thi HSG hay các bài kiểm tra trên lớp sẽ không bị mắc phải những cái lỗi tương tự.
bài phía dưới: Từ (1) , (2) => \(x+2\sqrt{xy}+y\ge16\) nha
Bỏ qua lỗi này. Cái quan trọng là khi tìm giá trị lớn nhất hoặc nhỏ nhất em cần phải biết nó đạt tại x =?, y=?.
nếu bỏ qua phần này sẽ bị trừ điểm rất nặng. :)
Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)
\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)
Áp dụng nhiều lần bđt trên ta được
\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)
\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)
\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)
\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)
C/m tương tự cho các bđt còn lại
\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)
\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)
Cộng vế theo vế được
\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)
Dấu "=" xảy ra
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)
\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)
Vậy ..........
cách khác :))
\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)
\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)
\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)
\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Cho mình hỏi bài này sử dụng bđt cauchy trực tiếp luôn có được không?
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)