số học sinh giỏi khá trung bình của lớp 7B lần lượt tỉ lệ 2 5 3 (ko có học yếu) tính số học sinh khá giỏi trung bình bt số học sinh khá hơn số học sinh giỏi là 12 em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{b-a}{3-2}=5\)
Do đó: a=10; b=15; c=20
Gọi số HS giỏi, khá, trung bình lần lượt là a,b,c(HS)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{b-a}{3-2}=\dfrac{5}{1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.2=10\\b=3.5=15\\c=5.4=20\end{matrix}\right.\)
Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c. \(\left(a,b,c\inℕ^∗\right)\)
Theo đề ra ta có b + c - a = 90 ; a : b : c = 2 : 3 : 5
\(=>\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{90}{6}=15\)
Suy ra: a = 15 . 2 = 30
b = 15 . 3 = 45
c = 15 . 5 = 60.
Vậy số học sinh Giỏi, Khá, Trung bình lần lượt là 30 em, 45 em, 60 em.
Gọi số học sinh giỏi, khá, trung bình lần lượt là x; y; z (x; y; z\(\in\)N*)
=>\(\frac{x}{2}\)= \(\frac{y}{3}\)= \(\frac{z}{5}\)
Áp dụng t/c DTSBN, ta có:
=>\(\frac{x}{2}\)= \(\frac{y}{3}\)= \(\frac{z}{5}\)= \(\frac{y+z-x}{3+5-2}\)= \(\frac{180}{6}\)=30
=> x=60
y= 90
z= 150
Vậy ...
Gọi số học sinh giỏi, khá, trung bình của khối 7 theo thứ tự là a, b và c.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)
\(\left[\begin{array}{nghiempt}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{5}=30\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=30\times2\\b=30\times3\\c=30\times5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=60\\b=90\\c=150\end{array}\right.\)
Giải:
Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c ( a,b,c\(\in\)N* )
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và b + c - a = 180
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy khối 7 có 60 học sinh giỏi
90 sinh khá
150 học sinh trung bình
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{b+c-a}{3+4-2}=\dfrac{120}{5}=24\)
Do đó: a=48; b=72; c=96
Gọi a,b,c lần lượt là số học sinh giỏi, khá, trung bình của khối 7 (a,b,c ∈ N*)
Theo đề bài, ta có :
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và b+c-a = 120(em)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{2}\) =\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=\(\dfrac{b+c-a}{3+4_{ }-2}\)=\(\dfrac{120}{5}\)=24
Từ\(\dfrac{a}{2}\)= 24 => a = 24.2 = 48
Từ \(\dfrac{b}{3}\)= 24 => b = 24.3 = 72
Từ\(\dfrac{c}{4}\)= 24 => c = 24.4 = 96
Vậy số học sinh giỏi là : 48 em
học sinh khá là : 72 em
học sinh trung bình là : 96 em
36 học sinh bạn nhé mink ko trả lời vì hơi dài k mink nhé ^.^
Lời giải:
Gọi số hs giỏi, khá, trung bình lần lượt là $a,b,c$
Theo bài ra ta có:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
$b+c-a=180$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30$
$\Rightarrow a=2.30=60; b=3.30=90; c=5.30=150$
Vậy số hsg là $60$ em.
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{c}{1}\\\dfrac{b}{5}=\dfrac{c}{2}\end{matrix}\right.\Leftrightarrow\dfrac{a}{16}=\dfrac{b}{5}=\dfrac{c}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{16}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a-b}{16-5}=\dfrac{22}{11}=2\)
Do đó: a=32; b=10; c=4