Cho tam giác ABC có AB=13cm, AC=20cm. Trên BC lấy điểm D sao cho CD=11cm và AD=13cm. Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do M nằm giữa A và B nên: AB = AM + MB = 13 + 11 = 24 cm
Theo hệ quả định lí Ta let ta có:
Chọn đáp án C
Hình bạn tự vẽ ạ.
a, Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(\dfrac{AD}{AB}=\dfrac{7}{14}=\dfrac{1}{2}\)
\(\dfrac{AE}{AC}=\dfrac{10}{20}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\)
Mà \(\widehat{A}:chung\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
b, Ta có : \(\Delta ADE\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}\)
hay \(\dfrac{7}{14}=\dfrac{ED}{18}\)
\(\Rightarrow ED=\dfrac{7.18}{14}=9\left(cm\right)\)
A D B E C
Xét \(\Delta ABC\)có: \(DE//BC\)\(\Rightarrow\frac{BD}{AB}=\frac{CE}{AC}\)( hệ quả của định lý Ta lét )
mà \(DB=1,5cm\); \(AB=5cm\)
\(\Rightarrow\frac{CE}{AC}=\frac{1,5}{5}=\frac{3}{10}\)\(\Rightarrow CE=\frac{3}{10}.AC\)
mà \(AC+EC=13\)\(\Rightarrow AC+\frac{3}{10}.AC=13\)
\(\Rightarrow\frac{13}{10}.AC=13\)\(\Rightarrow AC=10\left(cm\right)\)
\(\Rightarrow EC=10.\frac{3}{10}=3\left(cm\right)\)\(\Rightarrow AE=AC-EC=10-3=7\left(cm\right)\)
Vậy \(AC=10cm\); \(EC=3cm\); \(AE=7cm\)