K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

\(\left\{{}\begin{matrix}2x-3>0\\x-m< 4\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x>\frac{3}{2}\\x< m+4\end{matrix}\right.\)

Hệ bất phương trình vô nghiệm khi và chỉ khi m+4\(\le\frac{3}{2}\)

<=> \(m\le\frac{3}{2}-4\) <=>\(m\le\frac{-5}{2}\)

8 tháng 11 2019

25 tháng 4 2018

Ta có 2 x - 1 > 0 x - m < 3 ⇔ x > 1 2 x ≤ 3 + m .

Hệ vô nghiệm khi và chỉ khi: m + 3 ≤ 1 2 ⇔ x ≤ - 5 2 .

2 tháng 8 2019

Ta có: ( 1 ) ⇔ x ≤ - m . Tập nghiệm của (1) là  ( - ∞ ; - m ] .

( 2 ) ⇔ x > 5 . Tập nghiệm của (2) là 5 ; + ∞ .

Hệ đã cho có nghiệm khi và chỉ khi  ( - ∞ ; - m ] ∩ 5 ; + ∞ . Điều này xảy ra khi và chỉ khi 5 < - m ⇔ m < - 5 .

Đáp án là A.

NV
23 tháng 3 2022

\(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x< m+2\end{matrix}\right.\)

Hệ có nghiệm khi \(m+2>\dfrac{1}{2}\Rightarrow m>-\dfrac{3}{2}\)

20 tháng 10 2019

4 tháng 9 2017

Ta có 2x – 4 >0

* Xét bất phương  trình:  mx – 1 <0  (*)

    + Nếu m = 0 thì  ( *) luôn đúng với mọi x.

Khi đó, tập nghiệm của hệ bất phương trình là  ( 2 ; + ∞ ) .

  + Nếu m > 0 thì từ (*)  ⇔ m x < 1 ⇔ x < 1 m

Trong trường hợp này thì tập nghiệm của hệ bất phương trình không thể là  ( 2 ; + ∞ ) .

    + Nếu m < 0 thì từ (*) ⇔ m x < 1 ⇔ x < 1 m

Do đó, để hệ bất phương trình đã cho có tập nghiệm là  ( 2 ; + ∞ )  khi và chỉ khi 1 m < 2 ( luôn đúng vì m < 0).

Vậy tập hợp các giá trị m thỏa mãn là m ≤ 0 .

10 tháng 3 2018

Chọn B.

Xét hệ bất phương trình:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Để hệ bất phương trình có nghiệm thì 5 < -m ⇔ m > -5.