SỐ TỰ NHIÊN A nhỏ nhất khi chia 2 dư 1; chia 5 dư 2; và chia hết cho 3.
giải chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^
lên tra google thử đi bạn