CMR nếu a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 3 thì 3a2+3b2+3c2+4abc≥13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng ba cạnh tam giác lúc đầu là : 327,46 cm
Khi tăng cạnh thứ nhất thêm 2,46cm và giảm cạnh thứ hai đi 5,32cm thì tổng ba cạnh của tam giác lúc sau là:
327, 46 + 2,46 - 5,32 = 324,6 (cm)
Mỗi cạnh của tam giác lúc sau bằng nhau và bằng :
324,6 : 3 = 108,2 (cm)
Vì cạnh thứ nhất tăng thêm và cạnh thứ hai giảm đi thì ba cạnh bằng nhau nên cạnh thứ nhất là cạnh bé nhất và có độ dài là:
108,2 - 2,46 = 105,74 (cm)
Cạnh hình vuông cạnh cạnh bé nhất của tam giác và bằng 105,74 cm
Diện tích hình vuông là:
105,74 x 105,74 = 11180,9476 (cm2)
Đs....
Dễ thấy \(0< a,b,c< \frac{3}{2}\)
Thật vậy nếu g/s ngược lại tồn tại 1 số >= 3/2 và g/s đó là a
\(\Rightarrow a\ge b+c\) mâu thuẫn với BĐT tam giác nên ta có điều như trên
Ta có: \(\left(\frac{3}{2}-a\right)+\left(\frac{3}{2}-b\right)+\left(\frac{3}{2}-c\right)\ge3\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)
\(\Leftrightarrow\frac{9}{2}-\left(a+b+c\right)\ge3\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)
\(\Leftrightarrow\frac{1}{2}\ge\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)
\(\Leftrightarrow\frac{1}{8}\ge\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)\)
\(\Leftrightarrow\frac{1}{8}\ge\left(\frac{9}{4}-\frac{3}{2}a-\frac{3}{2}b+ab\right)\left(\frac{3}{2}-c\right)\)
\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{9}{4}\left(a+b+c\right)+\frac{3}{2}\left(ab+bc+ca\right)-abc\)
\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{27}{4}+\frac{3}{2}\left(ab+bc+ca\right)-abc\)
\(\Leftrightarrow\frac{3}{2}\left(ab+bc+ca\right)-abc\le\frac{7}{2}\)
\(\Leftrightarrow6\left(ab+bc+ca\right)-4abc\le14\)
\(\Leftrightarrow4abc\ge6\left(ab+bc+ca\right)-14\)
\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge3\left(a+b+c\right)^2-14\)
\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge13\)
Dấu "=" xảy ra khi: a = b = c = 1
Dễ thấy a,b,c là độ dài của tam giác nên
a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0
Theo Cauchy-Schwarz thì
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi a=b=c = 1
Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3
Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
Tương tự CM được:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)
Cộng vế 3 BĐT trên lại ta được:
\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(a=b=c\)
Chu vi của tam giac là: 21 + 6 = 27 (m)
Độ dài mỗi cạnh là: 27 : 3 = 9 (m)
Đáp số: 9 m
Vậy đáp án cần chọn là D
Do a;b;c là 3 cạnh của tam giác nên:
\(abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow abc\ge27-8abc-18\left(a+b+c\right)+12\left(ab+bc+ca\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Leftrightarrow abc\ge\frac{4}{3}\left(ab+bc+ca\right)-3\)
\(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)+\frac{16}{3}\left(ab+bc+ca\right)-12\)
\(\Leftrightarrow VT\ge\frac{8}{3}\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\frac{1}{3}\left(a^2+b^2+c^2\right)-12\)
\(\Leftrightarrow VT\ge\frac{8}{3}\left(a+b+c\right)^2+\frac{1}{9}\left(a+b+c\right)^2-12=13\)