Tìm x biết : |x-6|+2x=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2x-4|-|2x-10|=6
*2x-4\(\ge\)0\(\Leftrightarrow\)2x\(\ge4\)\(\Leftrightarrow x\ge2\):
trường hợp 1:\(2x-10\ge0\Leftrightarrow2x\ge10\Leftrightarrow x\ge5\Rightarrow x\ge5\)ta có:
2x-4-2x-10=6
2x-2x=6+4+10
0x=20(vô lý)
trường hợp 2:\(2x-10
=>/x-6/=10-2x
=>\(\orbr{\begin{cases}x-6==10-2x\\x-6=-10+2x\end{cases}}\)
th1: x-6=10-2x
=>x+2x=10+6
=>3x=16
=>x=\(\frac{16}{3}\)
th2:x-6=-10+2x
=>x-2x=-10+6
=>-1x=-4
=>x=4
=>\(\orbr{\begin{cases}x=\frac{10}{3}\\x=4\end{cases}}\)
\(\frac{1-2x}{10}+\frac{3-2x}{8}+\frac{23-2x}{6}=0\)
\(\Leftrightarrow\frac{1}{10}-\frac{2x}{10}+\frac{3}{8}-\frac{2x}{8}+\frac{23}{6}-\frac{2x}{6}=0\)
\(\Leftrightarrow\frac{1}{10}-\frac{x}{5}+\frac{3}{8}-\frac{x}{4}+\frac{23}{6}-\frac{x}{3}=0\)
\(\Leftrightarrow\left(\frac{1}{10}+\frac{3}{8}+\frac{23}{6}\right)-\left(\frac{x}{3}+\frac{x}{4}+\frac{x}{5}\right)=0\)
\(\Leftrightarrow\frac{517}{120}-\left(\frac{x}{3}+\frac{x}{4}+\frac{x}{5}\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)=\frac{517}{120}\)
\(\Leftrightarrow x.\frac{47}{60}=\frac{517}{120}\)
\(\Rightarrow x=\frac{517}{120}:\frac{47}{60}=\frac{11}{2}\)
Vậy \(x=\frac{11}{2}\)
(1-2x)/10+(3-2x)/8+(23-2x)/6=0
[48(1-2x)+60(3-2x)+80(23-2x)]/480=0
48-96x+180-120x+1840-160x=0
2068-376x=0
-376x=-2068
x=11/2
(x-2)2-(x-3)(x-3)=6
x2-2.x.2+22-x2-32=6
(x2-x2)-4x+(22+32)=6
-4x+13=6
-4x=6-13=-7
x=-7:(-4)=1,75
a, (2x - 1) - (x + 6) = 0
=> 2x - 1 - x - 6 = 0
=> 2x - x = 0 + 6 + 1
=> x = 7
Vậy x = 7
b, 2x - 1 - (5 - x) = -10
=> 2x - 1 - 5 + x = - 10
=> 2x + x = -10 + 5 + 1
=> 3x = -4
=> x = -4/3
a) \(???\)
b) \(123x+877x=2000\)
\(1000x=2000\)
\(x=2000:1000\)
\(x=2\)
c) \(2x.\left(x-10\right)=0\)
=> \(x-10=0\)
\(x=10\)
d)\(6.\left(x+2\right)-\left(4x+10\right)=100\)
\(6.x+12-4x+10=100\)
\(2x+2=100\)
\(2x=98\)
\(x=98:2\)
\(x=49\)
e) \(x.\left(x+1\right)=2+4+6+8+...+2500\)
\(x.\left(x+1\right)=1563750\)
mà ta thấy : \(1250.1251=1563750\)
=> \(x=1250\)
g)\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(x.100+5050=5750\)
\(x.100=5750-5050\)
\(x.100=700\)
\(x=7\)
| x - 6 | + 2x = 10
\(\Rightarrow\orbr{\begin{cases}x-6+2x=10\\6-x+2x=10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=16\\x=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=4\end{cases}}\)
Vậy \(x\in\left\{\frac{16}{3};4\right\}\)
@@ Học tốt @@
## Chiyuki Fujito
6-10 thì phải bằng -4 chứ bn