Rút gọn biểu thức với n\(\in\)N; n\(\ge\)2
A=\(\frac{2^2-1}{2^2}\)\(.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}\)\(....\frac{n^2-1}{n^2}\)
Help meeee................................................cần gấpppppp :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N = a − 1 a − a : a + 1 a = a − 1 a + 1 a a − 1 : a + 1 a = a + 1 a : a + 1 a = a + 1 a ⋅ a a + 1 = a a = a
\(\left(-m+n-p\right)-\left(-m-n-p\right)\)
\(=-m+n-p+m+n+p\)
\(=\left(-m+m\right)+\left(-p+p\right)+\left(n+n\right)\)
\(=2n\)
Vậy \(\left(-m+n-p\right)-\left(-m-n-p\right)=2n\)
\(\left(-m+n-p\right)-\left(-m-n-p\right)\)
\(=-m+n-p+m+n+p\)
\(=\left(-m+m\right)+\left(-p-p\right)+\left(n+n\right)\)
\(=0+0+\left(n+n\right)\)
\(=0+\left(n+n\right)\)
\(=n+n\)
\(=2n\)
Vậy biểu thức (-m+n-p)-(-m-n-p) =2n
x<-1=>x+1<=0
|x+1|=-x-1
x<-1=>2-x>1>0
|2-x|=2-x
N=2-x+3(x+1)=2-x+3x+3=2x+5
a) \(\left|x\right|+x\)
Vì \(\left|x\right|\ge0\) nên ta có 3TH:
TH1: \(x>0\)
\(\Rightarrow\left|x\right|+x=2x\)
TH2: \(x=0\)
\(\Rightarrow\left|x\right|+x=0\)
TH3: \(x< 0\)
\(\Rightarrow\left|x\right|+x=0\)
\(N=\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\dfrac{\sqrt{a}\sqrt{a}+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\sqrt{a}-\sqrt{a}\)
\(N=0\)
\(\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}\)
\(=\dfrac{a+3\sqrt{a}-\left(a+3\sqrt{a}\right)}{\sqrt{a}+3}\)
\(=\dfrac{a+3\sqrt{a}-a-3\sqrt{a}}{\sqrt{a}+3}\)
\(=\dfrac{0}{\sqrt{a}+3}\)
\(=0\)