K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Gọi (n + 4,n+5) là d

Vì n + 4 và n + 5 chia hết cho d => (n+5) - (n+4) = 1 chia hết cho d

=> d = 1

=> n +4/ n+5 tối giản

b.Gọi (2n+3, n+2) là d

Ta có 2n+4 và 2n+3 chia hết cho d

=> (2n+4)-(2n+3) = 1 chia hết cho d

=> d =1

=> 2n+3/n+2 tối giản

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

23 tháng 2 2016

Gọi UCLN(2n+1,5n+2)=d

Ta có:2n+1 chia hết cho d  =>5(2n+1) chia hết cho d  =>10n+5 chia hết cho d

   5n+2 chia hết cho d       =>2(5n+2) chia hết cho d   =>10n+4 chia hết cho d

=>(10n+5)-(10n+4) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số \(\frac{2n+1}{5n+2}\) tối giản với mọi số tự nhiên n

8 tháng 4 2016

a) Đặt ( 15n+1 ; 30n+1 )=d

=>15n+1 chia hết cho d =>30n+2 chia hết cho d

30n+2 chia hết cho d

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>15n+1 và 30n+1 nguyên tố cùng nhau

=>\(\frac{15n+1}{30n+1}\) tối giản

b)Đặt ( 2n+3;4n+8)=d

=>2n+3 chia hết cho d=>4n+6 chia hết cho d

4n+8 chia hết cho d

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

=>d= 1 hoặc 2

Mà 2n+3 là số lẻ

=>d khác 2

=>d=1

=>2n+3 và 4n+8 nguyên tố cùng nhau

=>\(\frac{2n+3}{4n+8}\) tối giản

k cho mk nhé

DD
31 tháng 8 2021

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)

Suy ra \(d=1\).

Suy ra đpcm. 

23 tháng 2 2016

Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)

=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d

và 4n + 5 chia hết cho d

=> 1 chia hết cho d

=> d = 1 (Vì d thuộc N*)

=> UWCLN(2n + 3; 4n + 5) = 1

=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n

Vậy,........

26 tháng 2 2018

gọi d là ƯC(n+1; 3n+2)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}}\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)

\(\Rightarrow3n+3-3n-2⋮d\)

\(\Rightarrow\left(3n-3n\right)+\left(3-2\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản

26 tháng 2 2018

Gọi d = ƯCLN ( n + 1 ; 3n + 2 )

Ta có : n +  1 chia hết cho d            => 3( n + 1 ) chia hết cho d

           3n + 2 chia hết cho d

=> ( 3n + 3 - 3n - 2 ) chia hết cho d => 1 chia hết cho d

=> d thuộc { 1 ; - 1 }

=> n + 1 ; 3n + 2 là hai số nguyên tố cùng nhau

=> phân số \(\frac{n+1}{3n+2}\) là phân số tối giản

13 tháng 11 2023

Gọi d=ƯCLN(8n+3;6n+2)

=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)

=>\(24n+9-24n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản

28 tháng 3 2019

Gọi UCLN (4n+7; 2n+3) là d

ta có: 4n + 7 chia hết cho d

2n + 3 chia hết cho d => 4n + 6 chia hết cho d

=> 4n + 7 - 4n - 6 chia hết cho d

=> 1 chia hết cho d

=> (4n+7)/(2n+3) là p/s tối giản

28 tháng 3 2019

Muốn chứng tỏ phân số \(\frac{4n+7}{2n+3}\)là phân số tối giản thì ta phải chứng minh được ( 4n+7; 2n + 3 ) = 1

Gọi d là ƯCLN( 4n + 7; 2n + 3 ). Ta có:

\(\hept{\begin{cases}4n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+7⋮d\\4n+6⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

=> Phân số \(\frac{4n+7}{2n+3}\)tối giản. ( ĐPCM )