(x cộng 1)^2 cộng 2.(X cộng 1) cộng 1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)
\(\Leftrightarrow2x^2+x^2-3x^2-4x+6x+3x+2+9+6=0\)
\(\Leftrightarrow5x+17=0\)
\(\Leftrightarrow x=-\dfrac{17}{5}\)
KL.............
\(b.\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)
\(\Leftrightarrow x^2-x^2+4x-2x-2x+4+6-1=0\)
\(\Leftrightarrow9=0\left(vôly\right)\)
KL..................
\(c.TươngTự\)
Bài 1:
a: \(\dfrac{25}{42}-\dfrac{20}{63}=\dfrac{75-40}{126}=\dfrac{35}{126}=\dfrac{5}{18}\)
b: \(\dfrac{9}{20}-\dfrac{13}{75}-\dfrac{1}{6}=\dfrac{135}{300}-\dfrac{52}{300}-\dfrac{50}{300}=\dfrac{33}{300}=\dfrac{11}{100}\)
Đề hai có nhân 9 nha bạn làm mình hoang mang cái đề quá
\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\\\Leftrightarrow \left[3\left(2x+1\right)\right]^2-\left[2\left(x+1\right)\right]^2=0\\ \Leftrightarrow\left[3\left(2x+1\right)-2\left(x+1\right)\right]\left[3\left(2x+1\right)+2\left(x+1\right)\right]=0\\\Leftrightarrow \left[6x+3-2x-2\right]\left[6x+3+2x+2\right]=0\\\Leftrightarrow \left(4x+1\right)\left(8x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{5}{8}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-\frac{1}{4};-\frac{5}{8}\right\}\)
\(\left(2x+1\right)^2-4.\left(x+1\right)^2=0\\ \Leftrightarrow4x^2+4x+1-4.\left(x^2+2x+1\right)=0\\ \Leftrightarrow4x^2+4x+1-4x^2-8x-4=0\\ \Leftrightarrow-4x=3\\ \Leftrightarrow x=-\frac{3}{4}\)
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2009}{2011}\)
Đặt tổng vế trái là A
Ta có : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\)
\(\frac{1}{2}A=\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right)\div2}\right)\)
\(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{1}{2}A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x+1}\right)\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{x+1}\)
\(A=\left(\frac{1}{2}+\frac{1}{x+1}\right):\frac{1}{2}\)
\(A=1+\frac{1}{\left(x+1\right)\div2}\)
\(\Rightarrow1+\frac{1}{\left(x+1\right)\div2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\div2}=\frac{2009}{2011}-1=\frac{2009}{2011}-\frac{2011}{2011}=-\frac{2}{2011}\)
\(\Rightarrow-\frac{2}{-\left(x+1\right)}=-\frac{2}{2011}\)
\(\Rightarrow-\left(x+1\right)=2011\)
\(\Rightarrow x+1=-2011\)
\(\Rightarrow x=-2011-1=-2012\)
6 2/7 + 7 3/5 + 8 6/9 + 9 1/4 + 2/5 + 5/7 + 1/3 x 3/4 + 1967
= 44/7 + 38/5 + 78/9 + 37/4 + 2/5 + 5/7 + 1/3 + 1967
= ( 44/7 + 5/7 ) + ( 38/5 + 2/5 ) + ( 26/3 + 1/3 ) + ( 37/4 + 3/4 ) +1967
= 7 + 8 + 9 + 10 + 1967
= 15 + 9 + 10 + 1967
= 24 + 10 + 1967
= 34 + 1967
= 2001
\(\left(x+1\right)^2+2\left(x+1\right)+1=0\)
đề là như này hả cậu?
Ta có:
(x + 1)2 + 2(x + 1) + 1 = 0 ⇔ x2 + 2x + 1 + 2x + 2 + 1 = 0 ⇔ x2 + 4x + 4 = 0 ⇔ (x + 2)2 = 0 ⇔ x + 2 = 0 ⇔ x = -2
Vậy phương trình trên có nghiệm là x = -2