|3x-5| (2y + 5) 2022(42-3)2020<=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
23.19 - 23.14 + 12020
= 23.(19 - 14) + 1
= 8.5 + 1
= 41
102 - [60: (56: 54 - 3.5)]
= 100 - [60: (52 - 15)]
= 100 - [60: (25 - 15)]
= 100 - [60 : 10]
= 100 - 6
= 94
Vì \(\left(2x-5\right)^{2020}\ge0\forall x\); \(\left(5y+1\right)^{2022}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)
mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)
Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)
1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)
Giải:
1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}\)
\(=\dfrac{2020}{2021}\)
2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\)
\(=\dfrac{2}{9}+\dfrac{7}{9}:7\)
\(=\dfrac{2}{9}+\dfrac{1}{9}\)
\(=\dfrac{1}{3}\)
3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\)
\(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\)
\(\dfrac{x}{4}=\dfrac{-1}{8}\)
\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\)
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x-1\right|=0\)
\(3x-1=0\)
\(3x=0+1\)
\(3x=1\)
\(x=1:3\)
\(x=\dfrac{1}{3}\)
Chúc bạn học tốt!
\(\left(3x-12\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-12=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=12\\y=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\y=5\end{cases}}}\)
vậy x=4 và y=5
Bài 2; tìm cặp x,y thuộc N sao cho:
a, (3x -12) ( y- 5) = 0
\(\Rightarrow\orbr{\begin{cases}3x-12=0\\y-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=12\\y=5+0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=5\end{cases}}}\)
\(\left(x-5\right)^{2020}+\left(y-x+1\right)^{2022}=0\left(1\right)\)
Ta có \(\left\{{}\begin{matrix}\left(x-5\right)^{2020}\ge0,\forall x\\\left(y-x+1\right)^{2022}\ge0,\forall x;y\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}\left(x-5\right)^{2020}=0\\\left(y-x+1\right)^{2022}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-5=0\\y-x+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y-5+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \hept{2�−5=05�+1=0⇔\hept{�=52�=−15\hept{2x−5=05y+1=0⇔\hept{x=25y=−51