K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

Ta có : \(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\frac{2019}{2020}\right)^0\)

=> \(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+1\)

=> \(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)

Ta có : \(x-y=0\)

=> \(y-x=0\)

- Thay \(x-y=0,y-x=0\) vào biểu thức C ta được :

\(C=2.0+13x^3y^2.0+15xy.0+1\)

=> \(C=1.\)

10 tháng 2 2020

\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1=0+0+0+1=1\)

2 tháng 2 2018

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2

AH
Akai Haruma
Giáo viên
26 tháng 11 2023

Không có giá trị $C$ cụ thể bạn nhé. Bạn xem lại đề xem đã viết đúng chưa vậy?

DT
2 tháng 10 2023

Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0

=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0 

Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1

Thay vào bt S :

S = ( 2 - 1)^2019 + (2-1)^2019

= 1^2019 + 1^2019 = 2

2 tháng 10 2023

em cảm ơn

 

28 tháng 12 2021

B