K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

6 tháng 8 2017

NHỚ K MK NHA!!!

6 tháng 8 2017

a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5

Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).

b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40

Dấu= xảy ra khi y=10.

c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1

Dấu= xảy ra khi x=0

8 tháng 8 2018

1;\(Q=5-3\left(2x-1\right)^2\)

Có \(3\left(2x-1\right)^2\ge0\)

\(\Rightarrow Q\le5-0=5\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Max Q = 5 <=> x = 1/2

2;\(M=\frac{x^2+8}{x^2+2}=1+\frac{6}{x^2+2}\)

Để M đạt GTLN \(\Rightarrow\frac{6}{x^2+2}\)phải lớn nhất

\(\Rightarrow x^2+2\)phải đạt GTNN

Mà \(x^2+2\ge2\Leftrightarrow x=0\)

Vậy \(M\ge1+\frac{6}{2}=1+3=4\)(x = 0)

8 tháng 9 2020

\(đk:x-1\ge0\Rightarrow x\ge1\text{ và }2-x\ge0\Rightarrow x\le2\)

có : \(\left(4\sqrt{x-1}+3\sqrt{2-x}\right)^2\le\left(4^2+3^2\right)\left[\left(\sqrt{x-1}\right)^2+\left(\sqrt{2-x}\right)\right]\)

\(\Rightarrow A^2\le25\left(x-1+2-x\right)\)

\(\Rightarrow A^2\le25\) mà \(A\ge0\)

\(\Rightarrow A\le5\)

Dấu = xảy ra <=> \(\frac{4}{\sqrt{x-1}}=\frac{3}{\sqrt{2-x}}\)      đk : x khác 1 và x khác 2

\(\Leftrightarrow\frac{16}{x-1}=\frac{9}{2-x}\)

\(\Leftrightarrow32-16x=9x-9\)

\(\Leftrightarrow25x=41\Leftrightarrow x=\frac{41}{25}\left(tm\right)\)

vậy max a = 5 khi x = 41/25

11 tháng 5 2018

áp dụng bđt cosi ta có:

\(x^3+y^3+1>=3xy\Rightarrow\frac{1}{x^3+y^3+1}< =\frac{1}{3xy}\)

tương tự \(\frac{1}{y^3+z^3+1}< =\frac{1}{3yz};\frac{1}{z^3+x^3+1}< =\frac{1}{3zx}\)

dấu = xảy ra khi x=y=z=1(thỏa mãn vì khi đó xyz=1*1*1=1)

\(\Rightarrow A< =\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)

\(\Rightarrow\)max của A là \(\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)khi x=y=z=1

khi đó A=\(\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

vậy max A là 1 khi x=y=z=1

11 tháng 5 2018

Với x, y>o ta có bđt \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Cmtt ta được A\(\le\frac{a+b+c}{a+b+c}=1\)

Dấu = xra khi a=b=c và abc=1 =>a=b=c=1