K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

A B C H M N

- Ta có : \(\Delta ABC\) cân tại A .

=> AB = AC ( Tính chất tam giác cân )

=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )

- Xét \(\Delta AHB\)\(\Delta AHC\) có :

\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)

=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )

b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )

=> BH = CH ( cạnh tương ứng )

- Xét \(\Delta HMB\)\(\Delta HNC\) có :

\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )

=> MB = NC ( cạnh tương ứng )

Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)

Mà AB = AC (tam giác cân )

=> \(AM=AN\)

- Xét \(\Delta AMN\) có : AM = AN ( cmt )

=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )

c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )

=> \(\widehat{AMN}=\widehat{ANM}\)

\(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)

=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)

=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )

- Ta có : \(\Delta ABC\) cân tại A .

=> \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)

=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )

Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)

Mà 2 góc trên ở vị trí đồng vị .

=> MN // BC ( Tính chất 2 đoạn thẳng song song )

10 tháng 2 2020

d, ( Hình vẽ câu trên nha )

- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :

\(AH^2+BH^2=AB^2\)

9 tháng 3 2022

a) Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H:

AB = AC (Tam giác ABC cân tại A).

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right).\)

b) Xét tam giác ABC cân tại A:

AH là đường cao (AH ⊥ BC).

\(\Rightarrow\) AH là đường trung tuyến (T/c tam giác cân).

\(\Rightarrow\) H là trung điểm BC.

Xét tam giác MBH vuông tại M và tam giác NCH vuông tại N:

BH = CH (H là trung điểm BC).

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right).\\ \Rightarrow BM=CN.\)

Ta có: \(AM=AB-BM;AN=AC-CN.\)

Mà \(\left\{{}\begin{matrix}AB=AC\\BM=CN\end{matrix}\right.\) (cmt).

\(\Rightarrow AM=AN.\Rightarrow\Delta AMN\) cân tại A.

c) Xét tam giác AMN cân tại A:

\(\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)

Xét tam giác ABC cân tại A:

\(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}.\)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC\left(dhnb\right).\)

20 tháng 2 2021

tự kẻ hình nghen :33333

a) Xét tam giác AHB và tam giác AHC có

AH chung

AHC=AHB(=90 độ)

AB=AC(gt)

=> tam giác AHB= tam giac AHC(ch-cgv)

b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )

Xét tam giác AMH và tam giác ANH có

A1=A2(cmt)

AH chung

AMH=ANH(=90 độ)

=> tam giấcMH=tam giác ANH(ch-gnh)

=> AM=AN( hai cạnh tương ứng)

=> tam giác AMN cân A

20 tháng 2 2021

các môn tự nhiên ko nên copy mạng nha bn, thầy Lâm bảo thế, nếu cop sẽ bị trừ GPok

12 tháng 3 2022

a, Xét tam giác AHB và tam giác AHC có 

AH _ chung 

AB = AC 

Vậy tam giác AHB~ tam giác AHC (ch-cgv) 

Ta có tam giác ABC cân tại A, có AH là đường cao 

đồng thười là đường pg 

b, Xét tam giác AMH và tam giác NAH có 

HA _ chung 

^MAH = ^NAH 

Vậy tam giác AMH = tam giác NAH (ch-gn) 

=> AM = AN ( 2 cạnh tương ứng ) 

c, Ta có AM/AB = AN/AC => MN // BC 

d, Ta có \(AH^2+BM^2=AN^2+BH^2\)

Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)

Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)

Lại có AM = AN (cmt) 

\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M) 

Vậy ta có đpcm 

 

12 tháng 3 2022

a vẽ hình cho e đc k ạ

26 tháng 1 2017

TU VE HINH NHA

CÓ TAM GIÁC ABC VUÔNG TẠI A :

=>AB=AC( DN TAM GIÁC CÂN)

a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:

AB=AC( CMT)

AH CHUNG

=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)

b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)

=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)

XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:

GÓC BAH= GÓC CAH(CMT)

AH CHUNG

=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)

=>AM=AN( 2 CÁNH TUONG ỨNG)

=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )

K CHO M NHA

26 tháng 1 2017

bạn náo giải câu c, d mình tích cho

16 tháng 3 2022

Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:

\(AB=AC\)  (\(\Delta ABC\) cân tại A).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)

Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:

\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)

Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)

\(\Rightarrow\Delta AMN\) cân tại A.

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)

Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)

10 tháng 4 2022

c) \(\widehat{BDE}=90^0-\widehat{CDE}=\widehat{BCE}\)

\(\Rightarrow\)△BDE∼△DCE (g-g) \(\Rightarrow\dfrac{BE}{DE}=\dfrac{DE}{CE}\Rightarrow BE.CE=DE^2\left(1\right)\)

-△AHC có: AH//DE (cùng vuông góc BC) \(\Rightarrow\dfrac{DE}{AH}=\dfrac{CE}{CH}\Rightarrow DE=\dfrac{CE.AH}{CH}\Rightarrow DE^2=\dfrac{AH^2.CE^2}{CH^2}\left(2\right)\)

-Từ (1) và (2) ta có điều cần phải c/m.

17 tháng 2 2016

Mình mới học lớp 6 thôi

17 tháng 2 2016

@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI