Đây nữa
hình thang ABCD , có AB//CD.Gọi EF LẦN LƯỢT LÀ TRUNG điểm của các đường chéo DB và AC. G là giao điểm của đường thẳng đi qua E và vuông góc AD. Và đường thẳng qua F vuông góc với BC . CMR: GD=GC
giúp mình với
Đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách 2, câu b/
Gọi giao của AC và BD là I, chứng minh được DI= CI
mà ED =CF
=> IE= IF
mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD
cách 1, câu b/
Gọi N là giao EF và BC
dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng
>>> đpcm
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
a)bn tự cm đi . dựa theo t/c đg trung bình trong tam giác ấy
b)gọi H là t/đ của DC. H,F lần lượt là t/đ của DC,AC nên HF là đg trung bình của tg ADC=>HF//DA,mà GE//AD(gt)=>GE vg vs HF (1)
c/m tương tự ta đc:GF vg vs EH (2)
từ (1),(2) => G là trực tâm của tg EFH=> GH vg vs EF(3)
mặt khác EF//AB(câu a) và AB//DC(tg ABCD là hthang)=>EF//DC(4)
từ (3),(4)=>GH vg vs DC
xét tg GDC có : GH là đg trung tuyến (vì H là t/đ của DC) và GH vg vs DC (cmt)=>tg GDC cân tại G=>GD=GC
Gọi K trung điểm BC
--> KF//AD (trung bình của tg DAC)
--> EG vong gcs KF (vì EG vuông góc AD), tương tự EK//BC và FG vuông góc FE
-->G là trực tâm tg EFK
--> GK vuông góc EF
--> GK vuông góc DC vì FE//DC (nối trung điểm 2 dường chéo của hình thang thuộc dường rung bình hình thang)
--> GK trung trực DC
-> tg GDC cân tại G
--> GD = GC (đpcm)