\(\frac{x^3}{\sqrt{5-x^2}}+8x^2=40\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(-\sqrt{5}\le x\le\sqrt{5}\)
PT \(\Leftrightarrow\frac{x^3}{\sqrt{5-x^2}}=8\left(5-x^2\right).\)
Đặt \(\sqrt{5-x^2}=a\)thì PT trở thành \(x^3=8a^3\Rightarrow x=2a\) thay vào rồi giải
ĐK: \(5-x^2>0\)
\(\frac{x^3}{\sqrt{5-x^2}}-8\left(5-x^2\right)=0\)
Đặt: \(\sqrt{5-x^2}=t>0\)
ta có: \(x^3-8t^3=0\)
<=> \(\left(x-2t\right)\left(x^2+2xt+4t^2\right)=0\)
<=> x - 2t = 0 ( vì x^2 + 2xt + 4t^2 =( x+ t) ^2 + 3t^2 >0)
<=> x = 2t
Ta có: \(x=2\sqrt{5-x^2}\)
<=> \(\hept{\begin{cases}x\ge0\\5x^2=20\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\x=\pm2\end{cases}}\Leftrightarrow x=2\)( thỏa mãn đk xđ)
vậy S = { 2 }
\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^4=x^3+x\sqrt{3}\)
\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)
Chắc là bạn nhầm đề, với đề này thì ko giải được
Nếu sửa đề thành \(\frac{x^3}{\sqrt{5-x^2}}+8x^2=40\) thì có thể giải được:
\(\Leftrightarrow\frac{x^3}{\sqrt{5-x^2}}+8\left(x^2-5\right)=0\)
Đặt \(\sqrt{5-x^2}=a>0\Rightarrow x^2-5=-a^2\)
Phương trình trở thành:
\(\frac{x^3}{a}-8a^2=0\)
\(\Leftrightarrow x^3-8a^3=0\Leftrightarrow x^3=\left(2a\right)^3\)
\(\Leftrightarrow x=2a\Leftrightarrow2\sqrt{5-x^2}=x\) (\(x\ge0\))
\(\Leftrightarrow4\left(5-x^2\right)=x^2\)
\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\left(l\right)\end{matrix}\right.\)
Bạn tham khảo ở đây:
https://hoc24.vn/hoi-dap/question/876493.html