\(\hept{\begin{cases}2x^2+5xy+2y^2+x+y+1=0\\x^2+4xy+y^2+12x+12y+10=0\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
\(2.\left(1\right)-\left(2\right)\) \(\Rightarrow3x^2+3y^2+6xy-10x-10y-8=0\)
\(\Leftrightarrow3\left(x+y\right)^2-10\left(x+y\right)-8=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-\frac{2}{3}-x\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu là xong
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a\ge4b\right)\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(2x^2+2y^2+4xy\right)+\left(x+y\right)+1+xy=0\\\left(x^2+2xy+y^2\right)+12\left(x+y\right)+10+2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)^2+\left(x+y\right)+1+xy=0\\\left(x+y\right)^2+12\left(x+y\right)+10+2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+a+1+b=0\\a^2+12a+10+2b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2+2a+2+2b=0\\a^2+12a+10+2b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+a+1+b=0\\3a^2-10a-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+a+1+b=0\\\left[{}\begin{matrix}a=4\\a=-\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=4\\b=-37\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\frac{2}{3}\\b=-\frac{11}{9}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)
b,
\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)
Tự xử đoạn còn lại nhé
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=7\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=-3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\2x-8y=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11y=-22\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=10+4y=10-8=2\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=-4\\5x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3x+2=-15+2=-13\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=7\\2x-4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=21\\x=-7+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-1\end{matrix}\right.\)
\(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(1\right)\\x^2-y^2+2x+y-3=0\left(2\right)\end{cases}}\)
Nhân 2 vế của (2) với 2, ta được hệ: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(3\right)\\2x^2-2y^2+4x+2y-6=0\left(4\right)\end{cases}}\)
Lấy (3) - (4) theo vế, ta có: \(\left(x^2-4xy+4y^2\right)-3\left(x-2y\right)+2=0\)
\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)
\(\Leftrightarrow\left(x-2y-1\right)\left(x-2y-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-2y=1\\x-2y=2\end{cases}}\)
+) Với x - 2y = 1, thay vào (3) và rút gọn, ta có \(y\left(y+3\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)
* Với \(y=0\Rightarrow x=1\)
* Với\(y=-3\Rightarrow x=-5\)
+) Với x - 2y = 2, thay vào (3) và rút gọn, ta có \(3y^2+13y+5=0\)(**)
Giải phương trình (**) thu được hai nghiệm \(\frac{-13+\sqrt{109}}{6}\)và \(\frac{-13-\sqrt{109}}{6}\)
* Với \(y=\frac{-13+\sqrt{109}}{6}\Rightarrow x=\frac{-7+\sqrt{109}}{3}\)
* Với \(y=\frac{-13-\sqrt{109}}{6}\Rightarrow x=\frac{-7-\sqrt{109}}{3}\)
Vậy hệ có 4 nghiệm (x;y) tương ứng là \(\left(1;0\right);\left(-5;-3\right);\)\(\left(\frac{-7+\sqrt{109}}{3};\frac{-13+\sqrt{109}}{6}\right);\)\(\left(\frac{-7-\sqrt{109}}{3};\frac{-13-\sqrt{109}}{6}\right)\)
/uc8tfghnm?u..........................hyuuttfd ggrs tdjtrthu a678t=45678/?
Lấy 2 lần phương trình trên trừ đi phương trình dưới là xong.