K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

\(\infty\)

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I

31 tháng 5 2017

Hình vẽ:

A B C D E

Giải:

Vì tam giác \(ABC\) cân tại \(A\):

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )

Xét \(\Delta ABD\)\(\Delta ACE\) có:

\(AB=AC \) \(\left(gt\right)\)

\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)

\(BD=CE \) \(\left(gt\right)\)

Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )

\(\Rightarrow\Delta ADE\) cân tại \(A\).

20 tháng 1 2018

Bài làm

Bạn tự vẽ hình nhé

Vì tam giác ABCABC cân tại A:

⇒ˆABC=ˆACB⇒ABC^=ACB^

⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )

Xét ΔABDΔABDΔACEΔACE có:

AB=ACAB=AC (gt)

ˆABD=ˆACEABD^=ACE^ (cmt)

BD=CEBD=CE (gt)(gt)

Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)

⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )

⇒ΔADE⇒ΔADE cân tại A

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE

=>ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔAHB=ΔAKC

=>AH=AK

Xét ΔADE có AH/AD=AK/AE

nên HK//DE

c:

góc HBD+góc D=90 độ

góc KCE+góc E=90 độ

mà góc D=góc E

nên góc HBD=góc KCE

góc MBC=góc HBD

góc MCB=góc KCE
mà góc HBD=góc KCE

nên góc MBC=góc MCB

=>ΔMBC cân tại M

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
DO đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE
\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

mà HB=CK

nên OB+HB=OC+CK

=>OH=OK

hay ΔOHK cân tại O

a: Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

c: Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

25 tháng 1 2022

Bạn vẽ hình giúp mình nghen

a. Kẻ AI vuông góc với BC, ta có ABC là tam giác cân tại A nên: AI vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow BI=IC\)

Mà DI=DB+BI và EI=EC+CI và BD=EC \(\Rightarrow DI=EI\)

Suy ra AI cũng là đường cao cũng là đường trung tuyến của tam giác AED

\(\Rightarrow\)Tam giác ADE cân tại A

b. Xét \(\Delta ABD\) và \(\Delta ACE\) có: \(\left\{{}\begin{matrix}AB=AC\\DB=EC\\AD=AE\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta ABD\) = \(\Delta ACE\) (c-c-c)

\(\Rightarrow\widehat{DAB}=\widehat{EAC}\)

Xét \(\Delta AHB\) vuông tại H và \(\Delta AKC\) vuông tại K có: \(\left\{{}\begin{matrix}AB=AC\\\widehat{DAB}=\widehat{EAC}\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta AHB\)=\(\Delta AKC\) (dpcm)

\(\Rightarrow AH=AK\)

Xét \(\Delta AHO\) vuông tại H và \(\Delta AKO\) vuông tại K có: \(\left\{{}\begin{matrix}AH=AK\\AOchung\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta AHO\) = \(\Delta AKO\) (dpcm)

 

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

b: 

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>góc HBD=góc KCE

=>góc IBC=góc ICB

=>ΔIBC cân tại I

c: Xét ΔABI và ΔACI có

AI chung

AB=AC

BI=CI

=>ΔABI=ΔACI

=>góc BIA=góc CIA

=>IA là phân giác của góc BIC

4 tháng 4 2018

theo đầu bài ta có góc abc=góc acb 

mà góc ABD+ABC =180(kề bù)

góc ACE+ACB =180 (kề bù)

suy ra góc ABD =ACE

xét tam giác ABD và tam giác ACE 

AB=AC(gt)

góc ABD=ACE

BD=CE(gt)

Do đó tam giác ABD=tam giác ACE (c.g.c)

nên AD=AE (2 cạnh tương ứng)

suy ra tam giác ADE cân