Tìm x,y biết
|2x+7y-17|+(5x-3y+38)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x = 3y => x/3 = y/2 ; 5y = 7z => y/7 = z/5
x/3 = y/2 ; y/7 = z/5 => x/3 = 7y/14 ; 2y/14 = z/5 => x/21 = y/14 = z/10 => 5x/105 = 7y/98 = 5z/50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
5x/105 = 7y/98 = 5z/50 = 5x - 7y + 5z / 105 - 98 + 50 = 30/57
.......
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
Có \(2x=3y;5y=7z\) Suy ra \(5.2x=5.3y;3.5y=3.7z\)
\(\Rightarrow2.5.x=3.5.y=3.7.z\)
Chia các vế cho 2.3.5.7 ta được: \(\frac{x}{3.7}=\frac{y}{2.7}=\frac{z}{2.5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{5x}{5.21}=\frac{y}{14}=\frac{7y}{7.14}=\frac{z}{10}=\frac{5z}{5.10}\)
\(\Rightarrow\frac{x}{21}=\frac{5x}{105}=\frac{y}{14}=\frac{7y}{98}=\frac{z}{10}=\frac{5z}{50}=\frac{5x-7y+5z}{105-98+50}=\frac{30}{57}\)
\(\Rightarrow x=21.\frac{30}{37}\); \(y=14.\frac{30}{57}\); \(z=10.\frac{30}{57}\)
Ta co : 2x=3y;5y=7z va 5x-7y+5z=30
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
\(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{2y}{14}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{5x}{105}=\frac{7y}{98}=\frac{5z}{50}\)
Ap dung tinh chat day ti so bang nhau ta co :
\(\frac{5x}{105}=\frac{7y}{98}=\frac{5z}{50}=\frac{5x-7y+5z}{105-98+50}=\frac{30}{57}=?\)
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1).
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}.\)
Có:
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}.\)
\(\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}.\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}.\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{75}\) và \(3x-7y+5z=30.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{75}=\frac{3x-7y+5z}{63-98+75}=\frac{30}{40}=\frac{3}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=\frac{3}{4}\Rightarrow x=\frac{3}{4}.21=\frac{63}{4}\left(KTM\right)\\\frac{y}{14}=\frac{3}{4}\Rightarrow y=\frac{3}{4}.14=\frac{21}{2}\left(KTM\right)\\\frac{z}{15}=\frac{3}{4}\Rightarrow z=\frac{3}{4}.15=\frac{45}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy không có cặp số \(\left(x;y;z\right)\) nào thỏa mãn đề bài.
Chúc bạn học tốt!