K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

a) xét ▲ABD VÀ▲ EBD có

BD là cạnh chung

góc ABD= góc DBE

AB= BE

nên Δ ABD=Δ EBD (c.g.c)

16 tháng 12 2016

b) vì Δ ABD=Δ EBD (cmt)

→ góc BED= góc BAC (2 góc tương ứng)

c) ta có:

AH VUÔNG VỚI BC

→ góc AHE = 90o (1)

góc bed = 90o (cmt) (2)

từ (1) và (2) suy ra DE song song với AH (2 đường thẳng cùng vuông góc với 1 đường thẳng)

16 tháng 12 2016

a) Xét tam giác BDA và tam giác BDE có:

      cạnh BD chung(gt)

      góc ABD=gócEBD(BD là tia phân giác góc B)

      BA=BE(gt)

=>tam giác ABD=tam giác EBD(c.g.c)=>Đpcm

b) Theo a có tam giác ABD=tam giác EBD=>góc A= góc BED(2 góc tương ứng) =>góc A= góc BED(2 góc tương ứng)

 Mà góc A=90 độ=>góc BED=90 độ=>Đpcm

c) Vì tam giác ABC vuông tại A(gt) =>góc B+góc C=90 độ          (1)

 Vì AH vuông góc với BC(gt) =>góc AHB =90 độ=>tam giác ABH vuông tại H=>góc B+góc BAH=90độ       (2)

Từ (1) và (2) =>góc ACH= góc BAH=>Đpcm

Vì góc DEB=90 độ=>DE vuông góc với BC           (*)

Mà AH vuông góc với BC      (**)

Từ (*) và(**)=>DE // AH(quan hệ vuông góc-song song)=>Đpcm

d) Gọi H là giao của BD và AE

Xét tam giác BAH và tam giác BEH có

       cạnh BH chung(gt)

       góc ABH- góc EBH(gt)

       BA=BE(gt)

=>tam giác ABH=tam giác EBH(c.g.c)

=>HA=HE(2 cạnh tương ứng)  (4)

     góc BHA=góc BHE

Mà góc BHE+góc BHE=180 độ(2 góc kề bù) => góc BHE=góc BHA=90 độ (3)

+ Từ (3) và(4)=> BD là đường trung trực của AE=>Đpcm

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>DA=DE và góc BED=góc BAD=90 độ

b; AH vuông góc BC

DE vuông góc BC

=>AH//DE

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

25 tháng 4 2023

Hihi cậu có thể viết chữ đẹp 1 xíu được hong:33

26 tháng 12 2016

Bạn làm được bài này chưa vậy giúp mình

28 tháng 4 2018

a) Xét tam giác ABD và tam giác EBD có :

AB= BE ( giả thiết )            (1)

Góc B1 = góc B2 ( vì tia BD là tia phân giác )              (2)

BD : cạnh chung             (3)

Từ (1) ;(2) và (3) => tam giác ABD = tam giác EBD ( cạnh - góc - cạnh )

b) Vì tam giác ABD = tam giác EBD ( chứng minh ở câu a)

=> góc BAD = góc BED ( cặp góc tương ứng )

Mà góc BAD = 90 độ 

=> BED = 90 độ

c) Vì góc BED = 90 độ 

=> tam giác BED vuông

d) Vì AH vuông góc với BC ( giả thiết)                (1)

và     DE vuông góc với BC ( giả thiết )                 (2)

Từ (1) và (2) => AH // DE ( điều phải chứng minh).