Cho đường tròn (O), dây BC cố định. Trên cung lớn BC của (O), lấy điểm A sao cho AB<AC. Hai tiếp tuyến qua B và C của (O) cắt nhau tại E. Chứng minh
a) Tứ giác BOCE nội tiếp
b) AE cắt (O) tại D. Chứng minh \(EB^2=ED.EA\)
c) Gọi F là trung điểm AD. Đường thẳng qua D và song song với EC cắt BC tại G. Chứng minh GF song song với AC
d) Trên tia đối AB lấy điểm H sao cho AH=AC. Chứng minh khi điểm A thay đổi trên cung lớn BC thì điểm H di động trên 1 đường tròn cố định