Cho tam giác ABC nhọn. Dựng ra phía ngoài hai tam giác đều ABE; ACF, lại dựng hình bình hành AEPF. Chứng minh rằng PBC là tam giác đều.
GIÚP MK VS!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là giao điểm của PE với AB.
Ta thấy rằng \(CF=AF=PE,PF=AE=EB\)
Đồng thời \(\widehat{BEP}=60^o-\widehat{AEP}=60^o-\widehat{AFP}=\widehat{PFC}\)
Dẫn đến \(\Delta PBE=\Delta CPF\left(c.g.c\right)\)
\(\Rightarrow PB=PC\) (1)
Mặt khác, \(\widehat{AMF}=\widehat{MAE}=60^o=\widehat{ACF}\) nên tứ giác AMCF nội tiếp.
\(\Rightarrow\widehat{BAC}=\widehat{PFC}\). Mà lại có \(AB=PF,AC=FC\) nên suy ra \(\Delta ABC=\Delta FPC\left(c.g.c\right)\)
\(\Rightarrow PC=BC\) (2)
Từ (1) và (2) \(\Rightarrow\Delta PBC\) đều (đpcm)
ta có : góc EBN = góc FCA(1)
lại có : góc EBC = 90 độ ; FCB = 90 độ
=> EBC = FBC (2)
từ (1) và (2) suy ra:
góc PBC = góc PCB
tiếp tục có:
\(\widehat{BPH}+\widehat{CPH}=2.\widehat{EBP}\)
mà \(2.\widehat{EBP}=\widehat{PBC}\)
\(\Rightarrow\widehat{BPH}+\widehat{CPH}=\widehat{PBC}\)
\(mà\widehat{BPH}+\widehat{CPH=}\widehat{BPC}\)
\(\Rightarrow\widehat{PBC}=\widehat{PBC}=\widehat{PCB}\)
từ đó suy ra : tam giác PBC là tam giác đều
( bn không hỉu chỗ nào thì hỏi lại mình nhe)
Theo hình vẽ thì $PBC$ làm sao mà là tam giác đều được nhỉ?
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD
A B C D I E M O N F
LẤY I LÀ TRUNG ĐIỂM CỦA BC, O LÀ TRUNG ĐIỂM CỦA AC
XÉT TAM GIÁC MAN VÀ TAM GIÁC IOF CÓ
OI = AB/2=AE/2=AM
OF=AN ( CÚNG LÀ ĐƯƠNG CAO CỦA TAM GIÁC ĐỀU)
GÓC FOI = GÓC MAN = 90 + GÓC A
=> TAM GIÁC MAN = TAM GIACC IOF ( C.G.C)
=> FI = DM
=> GÓC OFI = GÓC MNA
=> GÓC MND = GÓC ANC - GÓC MNA - GÓC DNC
= 90 - GÓC OFI - GÓC IFC
= 90 - 30 = 60
LẠI CÓ FI = ND/2
FI = MD
=> MD = ND/2
MÀ GÓC MND = 60
-> TAM GIÁC MND LÀ NỬ TAM GIÁC ĐỀU
=> DM VUÔNG GÓC DN