K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Câu 1: Cho tam giác ABC, một đường thẳng // với BC cắt AB và AC lần lượt tại D và E. Khẳng định nào sau đây đúng

A.DCDB=EAEC B. DC.DB=EC.EA

C. DC.EC=DB.EA D. DC.ea=DB.EC

Câu 2: Cho tam giác ABC, MN//BC với M nằm giữa A và B, N nằm giữa A và C. Biết AN=2cm, AB=3AM. Kết quả nào đúng

A. AC=6cm B. CN=3cm C. AC=9cm D. CN=1,5cm

Câu3: Cho tam giác ABC, AB=14cm, AC =21cm. AD là phân giác của góc A. Biết BD=8cm. Độ dài cạnh BC là

A. 15cm B. 18cm C. 20cm D. 22cm

Câu 4: Cho tam giác MNK, NS là phân giác góc MNK. Biết MN=3cm, NK=5cm, MS=1,5cm. Ta có SK=

A. 2,5cm B. 0,1cm C.0,4cm D.10cm

31 tháng 1 2023

Do DE song song BC 

=> Theo định lý Talet, DA/DB = EA/EC

Mà DA/DB= EC/EA

=> EC=EA

=> E là trung điểm AC

=> DE là đường trung bình của tam giác ABC

=> D cũng là trung điểm AB

17 tháng 12 2021

Chọn D

24 tháng 1 2021

A B C O Q P F E D

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q

Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

22 tháng 4 2018

Đáp án cần chọn là: D

Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.

Tương tự:

Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.

Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.

22 tháng 3 2017

Đáp án cần chọn là: B

Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^  (so le trong)

Mà D I B ^ = I B C ^  (gt) nên  D I B ^ = D B I ^

Suy ra tam giác BDI cân đỉnh D.

Do đó DI = DB (1)

Ta có: IE // CB nên suy ra E I C ^ = B C I ^  (so le trong)

Mà E I C ^ = B C I ^  (gt) nên  E C I ^ = E I C ^

Suy ra tam giác EIC cân đỉnh E

Do đó EI = EC (2)

Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE

=> DE = BD + CE