Cho hình chữ nhật ABCD có AB = 4cm , CD = 9cm .Trên các cạnh AB , AD lần lượt lấy M , N sao cho AM = AN
a) Tính diện tích hình MBCDN theo x
b) Tìm x biết diện tích hình MBCDN = \(34cm^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự bài 2A ta có S M B C D N = S A B C D − S A M N = 60 − 1 2 ( 10 − x ) . ( 6 − x )
SQAM = SQDP = \(\dfrac{1}{6}\) SABCD = 48 cm2
SMBN = SPNC = \(\dfrac{1}{12}\) SABCD = 24 cm2
Diện tích hình MNPQ là:
288 - (48 + 24) x 2 = 144 (cm2)
Đáp số: 144 cm2
Kẻ 2 đường chéo của MNPQ lần lượt là MP; NQ
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì BN = NC ; DQ = QA
=> Vì BC =AD=> BN = NC = DQ = QA
=> Kẻ đường chéo thứ 2 từ N sang Q = Chiều dài của hcn ABCD
=> SMNPQ = NQ*MP : 2
Mà NQ = AB và MP = BC
=> SMNPQ = AB* BC : 2
Mà AB*BC= 288
=> SMNPQ = 288 : 2
SMNPQ = 144 (cm2)
SAMQ = \(\dfrac{2}{3}\)SABQ (vì hai tam giác có chung đường cao hạ từ đỉnh Q xuống đáy AB và AM = \(\dfrac{2}{3}\)AB)
SABQ = \(\dfrac{1}{2}\)SABD ( vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AD và AQ = \(\dfrac{1}{2}\)AD)
SABD = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)
⇒ SAMQ = \(\dfrac{2}{3}\) \(\times\) \(\dfrac{1}{2}\) \(\times\dfrac{1}{2}\) = \(\dfrac{1}{6}\) SABCD = 96 \(\times\) \(\dfrac{1}{6}\) = 16 (cm2)
SDPQ = SCPN = \(\dfrac{1}{2}\)SCDN = (vì hai tam giác có chung chiều cao hạ từ đỉnh N xuống đáy CD và CP = \(\dfrac{1}{2}\)CD)
SCDN = \(\dfrac{1}{2}\)SBCD ( Vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy BC và CN = \(\dfrac{1}{2}\) CB)
SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)
⇒ SDPQ = SCPN = \(\dfrac{1}{2}\)\(\times\dfrac{1}{2}\times\dfrac{1}{2}\)SABCD = 96 \(\times\)\(\dfrac{1}{8}\) = 12 (cm2)
BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB
SBMN = \(\dfrac{1}{3}\)SABN (Vì hai tam giác có chung đường cao hạ từ đỉnh N xuống đáy AB và BM = \(\dfrac{1}{3}\) AB)
SABN = \(\dfrac{1}{2}\)SABC (Vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BN = \(\dfrac{1}{2}\)BC)
SABC = \(\dfrac{1}{2}\) SABCD ( vì ABCD là hình chữ nhật)
⇒SBMN = \(\dfrac{1}{3}\)\(\times\)\(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\)SABCD = 96 \(\times\) \(\dfrac{1}{12}\) = 8 (cm2)
SMNPQ = SABCD - (SAMQ + SDPQ + SCPN + SBMN)
SMNPQ = 96 - (16 + 12 + 12 + 8) = 48 (cm2)
Đáp số: 48 cm2
Lê Thu Trang sao HCN mà CD\(\ne\) AB
xin lỗi đấy là AD