K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2022

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
ĐKXĐ:.........

PT \(\Leftrightarrow 3(x^2-x)+[(x+1)-\sqrt{3x+1}]+[(x+2)-\sqrt{5x+4}]=0\)

\(\Leftrightarrow 3(x^2-x)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow (x^2-x)\left[3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right]=0\)

Dễ thấy với $x\geq \frac{-1}{3}$ thì biểu thức trong ngoặc vuông luôn dương 

$\Rightarrow x^2-x=0$

$\Leftrightarrow x(x-1)=0$

$\Rightarrow x=0$ hoặc $x=1$ (đều tm)

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

NV
27 tháng 7 2021

a.

\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)

Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:

\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)

\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)

\(\Leftrightarrow x+1=y\)

\(\Leftrightarrow\left(x+1\right)^3=y^3\)

\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)

\(\Leftrightarrow x^3+3x^2-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)

NV
27 tháng 7 2021

b.

\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:

\(a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)

\(\Leftrightarrow8x^3-6x-1=0\)

Đặt \(f\left(x\right)=8x^3-6x-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm

\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)

\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)

\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)

Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)

Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)

Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)

\(\Rightarrow8cos^3u-6cosu-1=0\)

\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)

\(\Leftrightarrow2cos3u=1\)

\(\Leftrightarrow cos3u=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)

 

=>\(\dfrac{x^2-3x+6-x^2+3x-6}{\sqrt{x^2-3x+6}-\sqrt{x^2-3x+3}}=3\)

=>căn x^2-3x+6-căn x^2-3x+3=1

Đặt x^2-3x+3=a

=>căn a+3-căn a=1

=>a+3+a-2căn a^2+3a=1

=>2*căn (a^2+3a)=2a+3-1=2a+2

=>căn a^2+3a=a+1

=>a^2+3a=a^2+2a+1

=>a=1

=>x^2-3x+2=0

=>x=1 hoặc x=2

20 tháng 6 2023

Dòng đầu anh vận dụng gì cái jz ạ?

6 tháng 1 2021

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)