giải pt: \(2\sqrt{x-1}+3\sqrt{x-3}=\sqrt{x^2-4x+3}+6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)
\(\Leftrightarrow5-2x=36\)
\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)
2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)
\(\Leftrightarrow2-x=x+1\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)
\(\Leftrightarrow\left|x-5\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
b.
Đặt \(\sqrt[3]{3x-2}=y\Rightarrow y^3=3x-2\)
Ta được hệ:
\(\left\{{}\begin{matrix}x^3+2=3y\\y^3=3x-2\end{matrix}\right.\)
Trừ vế cho vế:
\(x^3-y^3+2=3y-3x+2\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3\right)=0\)
\(\Leftrightarrow x=y\)
\(\Leftrightarrow x^3=3x-2\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)
Kiểm tra lại đề câu c
a.
Đặt \(\sqrt[3]{4x-3}=y\Rightarrow y^3=4x-3\)
Ta được hệ:
\(\left\{{}\begin{matrix}x^3+3=4y\\y^3=4x-3\end{matrix}\right.\)
Trừ về cho vế:
\(x^3-y^3+3=4y-4x+3\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+4\right)=0\)
\(\Leftrightarrow x=y\)
\(\Leftrightarrow x=\sqrt[3]{4x-3}\)
\(\Leftrightarrow x^3-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-3\right)=0\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge1\\x\ge3\end{matrix}\right.\)
=> \(x\ge3\)
Ta có : \(2\sqrt{x-1}+3\sqrt{x-3}=\sqrt{x^2-4x+3}+6\)
=> \(2\sqrt{x-1}+3\sqrt{x-3}=\sqrt{\left(x-3\right)\left(x-1\right)}+6\)
Đặt \(\sqrt{x-1}=a,\sqrt{x-3}=b\) ta được phương trình :
\(2a+3b=ab+6\)
=> \(2a+3b-ab-6=0\)
=> \(a\left(2-b\right)=6-3b\)
=> \(a=\frac{6-3b}{2-b}=\frac{3\left(2-b\right)}{2-b}=3\)
Thay \(a=\sqrt{x-1}\) vào phương trình trên ta được :
\(\sqrt{x-1}=3\)
=> \(\left(\sqrt{x-1}\right)^2=3^2\)
=> \(\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=10\left(TM\right)\\x=-8\left(KTM\right)\end{matrix}\right.\)
=> \(x=10\)
Vậy phương trình có nghiệm là x = 10 .