Cho tam giác ABC có AM là đường trung tuyến .Điểm E thuộc AM sao cho AE=3EM.Tia BE cắt AC tại N .Tính AN/NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có MP là đường trung bình tam giác BCN, suy ra P là trung điểm NC. Mặt khác theo định lý Ta-let:
\(\frac{NA}{NP}=\frac{KA}{KM}=\frac{1}{2}\to NP=2NA\to AP=\frac{3}{5}AC\to S_{APM}=\frac{3}{5}S_{AMC}=\frac{3}{5}\cdot30\left(cm^2\right)=18\left(cm^2\right).\)
Mặt khác \(KN\parallel MP,\frac{AN}{AP}=\frac{1}{3}\to\Delta AKN\sim\Delta AMP\) với tỉ số đồng dạng \(k=\frac{1}{3}.\)
Do đó \(\frac{S_{AKN}}{S_{AMP}}=\frac{1}{9}\to S_{AKN}=\frac{1}{9}\cdot18\left(cm^2\right)=2\left(cm^2\right).\)
Đề bài của bn bị thiếu à?
Cho tam giác ABC vuông tai A (AB ?
Nối M với E.
Có MF là đường trung bình tam giác BEC nên MF//BE.
Xét tam giác AMC có E là trung điểm của AF, MF//BE nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
\(\overrightarrow{AE}+\overrightarrow{AF}+\overrightarrow{AN}+\overrightarrow{MN}=\left(\overrightarrow{AF}+\overrightarrow{FC}\right)+\left(\overrightarrow{AN}+\overrightarrow{MN}\right)\)
\(=\overrightarrow{AC}+\overrightarrow{0}=\overrightarrow{AC}.\)