\(a^4+b^4\le\frac{a^6}{b^2}+\frac{b^6}{a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^6}{b^2}+\frac{b^6}{a^2}=\frac{a^8+b^8}{a^2b^2}\ge\frac{\left(a^4+b^4\right)^2}{2a^2b^2}=\frac{\left(a^4+b^4\right)\left(a^4+b^4\right)}{2a^2b^2}\ge\frac{\left(a^4+b^4\right).2a^2b^2}{2a^2b^2}=a^4+b^4\)
Dấu "=" xảy ra khi \(a^2=b^2\)
Áp dụng BĐT AM - GM \(\hept{\begin{cases}\frac{b^6}{a^2}+a^2b^2\ge2b^4\\\frac{b^6}{a^2}+a^2b^2\ge2a^4\end{cases}}\Rightarrow\frac{b^6}{a^2}+\frac{a^6}{b^2}\ge2b^4+2a^4+2a^2b^2\)
Ta lại có: \(2\left(a^4+b^4\right)-2a^2b^2\ge a^4+b^4\)
\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4\left(đpcm\right)\)
\(\text{Ta có: a;b}\ne0\text{ nên:}\frac{a^6}{b^2};\frac{b^6}{a^2};a^4;b^4>0\)
\(\text{Áp dụng bất đẳng thức cô si ta có: }\)
\(\hept{\begin{cases}\frac{a^6}{b^2}+\frac{a^6}{b^2}+b^4\ge3\sqrt[3]{\frac{a^{12}.b^4}{b^4}}=3a^4\\\frac{b^6}{a^2}+\frac{b^6}{a^2}+a^4\ge3\sqrt[3]{\frac{b^{12}.a^4}{a^4}}=3b^4\end{cases}}\)
\(\Rightarrow2VP\ge2VT\Leftrightarrow VP\ge VT\left(\text{điều phải chứng minh}\right)\)
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
a) \(-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{15}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le\frac{-33}{15}:\frac{21}{15}\)
=> \(-10\le x\le\frac{-11}{7}\)
=> \(x\in\left\{-10;-9,-8,-7,-6,-5,-4,-3,-2,-1\right\}\)
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ
\(\frac{a^6}{b^2}+\frac{b^6}{a^2}=\frac{a^8+b^8}{a^2b^2}\ge\frac{\left(a^4+b^4\right)^2}{2a^2b^2}=\frac{\left(a^4+b^4\right)\left(a^4+b^4\right)}{2a^2b^2}\ge\frac{2a^2b^2\left(a^4+b^4\right)}{2a^2b^2}\)
\(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^6}{b^2}.a^2b^2}=2a^4\)
\(\Rightarrow\frac{a^6}{b^2}\ge2a^4-a^2b^2\). Tương tự rồi cộng lại suy ra:
\(\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2\left(a^4+b^4\right)-2a^2b^2\)
\(\ge2\left(a^4+b^4\right)-\left(a^4+b^4\right)=a^4+b^4\)
Đẳng thức xảy ra khi a = b