K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 2 2020

\(\frac{a^6}{b^2}+\frac{b^6}{a^2}=\frac{a^8+b^8}{a^2b^2}\ge\frac{\left(a^4+b^4\right)^2}{2a^2b^2}=\frac{\left(a^4+b^4\right)\left(a^4+b^4\right)}{2a^2b^2}\ge\frac{2a^2b^2\left(a^4+b^4\right)}{2a^2b^2}\)

8 tháng 2 2020

\(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^6}{b^2}.a^2b^2}=2a^4\)

\(\Rightarrow\frac{a^6}{b^2}\ge2a^4-a^2b^2\). Tương tự rồi cộng lại suy ra:

\(\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2\left(a^4+b^4\right)-2a^2b^2\)

\(\ge2\left(a^4+b^4\right)-\left(a^4+b^4\right)=a^4+b^4\)

Đẳng thức xảy ra khi a = b

NV
16 tháng 9 2019

\(\frac{a^6}{b^2}+\frac{b^6}{a^2}=\frac{a^8+b^8}{a^2b^2}\ge\frac{\left(a^4+b^4\right)^2}{2a^2b^2}=\frac{\left(a^4+b^4\right)\left(a^4+b^4\right)}{2a^2b^2}\ge\frac{\left(a^4+b^4\right).2a^2b^2}{2a^2b^2}=a^4+b^4\)

Dấu "=" xảy ra khi \(a^2=b^2\)

6 tháng 2 2020

Áp dụng BĐT AM - GM \(\hept{\begin{cases}\frac{b^6}{a^2}+a^2b^2\ge2b^4\\\frac{b^6}{a^2}+a^2b^2\ge2a^4\end{cases}}\Rightarrow\frac{b^6}{a^2}+\frac{a^6}{b^2}\ge2b^4+2a^4+2a^2b^2\)

Ta lại có: \(2\left(a^4+b^4\right)-2a^2b^2\ge a^4+b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4\left(đpcm\right)\)

6 tháng 2 2020

\(\text{Ta có: a;b}\ne0\text{ nên:}\frac{a^6}{b^2};\frac{b^6}{a^2};a^4;b^4>0\)

\(\text{Áp dụng bất đẳng thức cô si ta có: }\)

\(\hept{\begin{cases}\frac{a^6}{b^2}+\frac{a^6}{b^2}+b^4\ge3\sqrt[3]{\frac{a^{12}.b^4}{b^4}}=3a^4\\\frac{b^6}{a^2}+\frac{b^6}{a^2}+a^4\ge3\sqrt[3]{\frac{b^{12}.a^4}{a^4}}=3b^4\end{cases}}\)

\(\Rightarrow2VP\ge2VT\Leftrightarrow VP\ge VT\left(\text{điều phải chứng minh}\right)\)

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

22 tháng 6 2015

a) \(-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{15}:1\frac{6}{15}\)

=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le\frac{-33}{15}:\frac{21}{15}\)

=> \(-10\le x\le\frac{-11}{7}\)

=> \(x\in\left\{-10;-9,-8,-7,-6,-5,-4,-3,-2,-1\right\}\)

 

6 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new

Help meeee! thanks nhiều ạ

8 tháng 12 2019

Đừng tag níc phụ này.

Mà cái câu 2a) bên dưới gì đó ko có đk gì của a, b, c sao giải đc?