Cho a, b >0
CMR: 1/a + 1/b > hoặc bằng 4/a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
\(\frac{1}{a+1}+\frac{1}{b+1}\)
\(=\frac{b+1}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{\left(a+1\right)\left(b+1\right)}\)
\(=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\)
\(=\frac{3}{ab+a+b+1}\)
\(=\frac{3}{ab+2}\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Cho a, b > 0. CMR: 1/a + 1/b ≥ 4/(a + b) (✽)
Cách 1: Biến đổi tương đương
(✽) ⇔ (a + b)/ab ≥ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế
⇔ (a + b)² ≥ 4ab
⇔ a² + 2ab + b² ≥ 4ab
⇔ a² - 2ab + b² ≥ 0
⇔ (a - b)² ≥ 0 luôn đúng ∀ a,b > 0
--> đpcm
Dấu " = " xảy ra ⇔ a = b
P/s: Em ko chắc đâu nhé
\(\Rightarrow a,b\ge1\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=\frac{a}{a}+\frac{a}{b}+\frac{b}{b}+\frac{b}{a}\)
\(=1+\frac{a}{b}+1+\frac{b}{a}\)
\(=2+\frac{a}{b}+\frac{b}{a}\)
\(=2+\frac{a.a}{b.a}+\frac{b.b}{b.a}\)
\(=2+\frac{a^2+b^2}{b.a}\)
\(=\frac{2.a.b}{a.b}+\frac{a^2+b^2}{b.a}\)
\(=\frac{2.a.b+a^2+b^2}{a.b}\)
\(=2+a^2+b^2\)
Nếu :\(a=1;b=1\)
\(\Rightarrow2+a^2+b^2\ge4\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(Do a,b>0)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Đúng)
Vậy.....
Xét hiệu \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)ta có:
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)
\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}=\frac{a^2-2ab+b^2}{ab\left(a+b\right)}=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)
Vì \(a,b>0\)\(\Rightarrow\hept{\begin{cases}ab>0\\a+b>0\end{cases}}\Rightarrow ab\left(a+b\right)>0\)
mà \(\left(a-b\right)^2\ge0\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
hay \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)