K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

-5B=(-5)1+(-5)2+(-5)3+...+(-5)2018

-5B-B=[(-5)1+(-5)2+...+(-5)2018] - [(-5)0+(-5)1+...+(-5)2017]

-6B=(-5)2018-(-5)= (-5)2018-1

B= [(-5)2018-1]:-6

Anh học tốt nha ( em mới lớp 6)

10 tháng 2 2020

Cho e sửa lại dòng cuối :

B= [(-5)2018-(-1)]:-6

13 tháng 4 2022

rối quá :)

B = (-5)0 + 51 + (-5)2 + 53 + ... + (-5)2016 + 52017

B = 1 + 51 + 52 + 53 + ... + 52016 + 52017

5B = 5 + 52 + 53 + ... + 52016 + 52017

5B - B = (5 + 52 + 53 + ... + 52016 + 52017) - (1 + 51 + 52 + 53 + ... + 52016 + 52017)

   4B    =    52017                                          -       1

   B      =   \(\dfrac{5^{2017}-1}{4}\)

5 tháng 3 2020

\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2017}\)

\(-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)

\(-6B=\left(-5\right)^{2017}-1\)

\(B=\frac{\left(-5\right)^{2017}-1}{-6}\)

Ta có : B = (-5)^0 + (-5)^1 + ......+ (-5)^2017

          (-5)B = (-5)^1 + (-5)^2 + .......+ (-5)^2018

              (-4)B = (-5)^0- (-5)^2018

           B = 1 - (-5)^2018 / (-4)

Nếu có sai sót gì mong các bạn bỏ qua

17 tháng 3 2019

\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)

\(\Leftrightarrow-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+\left(-5\right)^4+...+\left(-5\right)^{2018}\)

\(\Leftrightarrow-5B-B=\left(-5\right)^{2018}-\left(-5\right)^0\)

\(\Leftrightarrow-6B=\left(-5\right)^{2018}-1\)

\(\Leftrightarrow B=\frac{\left(-5\right)^{2018}-1}{-6}\)

17 tháng 3 2019

Bạn ơi vì sao ở dòng 3 lại là (-5)^2017 - (-5)^0 vậy??

NV
20 tháng 2 2019

\(B=1-5+5^2-5^3+...+5^{2016}-5^{2017}\) (1)

\(\Rightarrow5B=5-5^2+5^3-5^4+...+5^{2017}-5^{2018}\) (2)

Cộng vế với vế của (1) và (2):

\(6B=1+5-5+5^2-5^2+5^3-5^3+...+5^{2017}-5^{2017}-5^{2018}\)

\(\Rightarrow6B=1-5^{2018}\)

\(\Rightarrow B=\dfrac{1-5^{2018}}{6}\)

Ta có: \(B=4^{2017}+4^{2016}+...+4^2+4^1+4^0\)

\(\Leftrightarrow4\cdot B=4^{2018}+4^{2017}+...+4^3+4^2+4^1\)

\(\Leftrightarrow3\cdot B=4^{2018}-1\)

\(\Leftrightarrow A=165\cdot\dfrac{4^{2018}-1}{3}+55\)

\(\Leftrightarrow A=4^{2018}\)

 

4 tháng 4 2017

Ta có : D = 1 + 5 + 52 + ...... + 52017

=> 5D = 5 + 52 + 53 + ...... + 52018

=> 5D - D = 52018 - 1

=> 4D = 52018 - 1

=> D = \(\frac{5^{2018}-1}{4}\)

4 tháng 4 2017

5D=5+.....+52018

5D-D=5+......52018-1-52-......-52017

4D=52018-1

D=52018-1/4

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)