K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

A B C D O

Ta có: \(AB//CD\left(Gt\right)\)

Áp dụng định lí ta - let trong hình thang \(ABCD\)ta có:

\(\Rightarrow\frac{OA}{OC}=\frac{OB}{OD}\Rightarrow OA.OD=OB.OC\left(đpcm\right)\)

29 tháng 3 2019

Ta có: AB // CD (gt), áp dụng hệ quả của định lý Ta – lét ta có:

Suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8(hệ quả định lí ta-lét)

Vậy OA.OD = OB.OC

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Xét tam giác \(OCD\) có \(AB//CD\) (giả thiết) và \(AB\) cắt \(OC;OD\) lần lượt tại \(A;B\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} = \frac{{AB}}{{CD}} \Rightarrow \frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} \Rightarrow OA.OD = OB.OC\)  (điều phải chứng minh).

13 tháng 9 2023

Xét tam giác \(OCD\) có \(AB//CD\) (giả thiết) và \(AB\) cắt \(OC;OD\) lần lượt tại \(A;B\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} = \frac{{AB}}{{CD}} \Rightarrow \frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} \Rightarrow OA.OD = OB.OC\)  (điều phải chứng minh).

10 tháng 10 2017

Vì AB//CD, áp dụng định lý Ta-lét, ta có: O A O C   =   O B O D  

Từ đó suy ra ĐPCM

7 tháng 2 2022

Xét tam giác OAB và tam giác OCD ta có : 

^AOB = ^COD ( đối đỉnh ) 

^OAB = ^OCD ( so le trong ) 

Vậy tam giác OAB ~ tam giác OCD ( g.g ) 

=> OA/OC = OB/OD => OA.OD = OC.OB 

7 tháng 2 2022

Vì AB//CD nên:

\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)  ( hệ quả đl ta-lét)

từ đó suy ra : OA.OD=OB.OC(đpcm)