\(P=\left(x-\frac{2}{7}\right)^{2018}+\left(0,2-\frac{1}{5}y\right)^{2019}+2021\)\(1\)
P = ?
Giup minh nhanh nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{21}{36}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(2018-2019\right)^0\)
=\(\frac{7}{12}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(-1\right)\)
= \(\frac{7}{12}.\left(\frac{5}{2}+\frac{2}{7}\right)+\left(-1\right)\)
=\(\frac{7}{12}.\frac{39}{14}+\left(-1\right)\)
=\(\frac{13}{8}+\left(-1\right)\)
= \(\frac{5}{8}\)
\(b,-12\frac{1}{3}-\frac{5}{7}+7\frac{1}{3}+1\frac{5}{7}+1^{2019}\)
=\(-\frac{37}{3}+\frac{-5}{7}+\frac{22}{3}+\frac{12}{7}+1\)
=\(\left(\frac{-37+22}{3}\right)+\left(\frac{-5+12}{7}\right)+=1\)
= \(-5+1+1\)
=\(-3\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)
TH1: x+y=0
=> x=-y => P=0
TH2: xy=-z.(x+y+z)
\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)
B1:
\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)
+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)
+Dấu "=" xảy ra khi
\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)
\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)
+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)
ủa alo cái gì vậy cha
j vay ban