Cho tam giác ABC nội tiếp (O) có cung BC=\(120^o\).tia phân giác \(\widehat{A}\) cắt BC tại D,cắt đường tròn tại E.
a)Tính số đo \(\widehat{A}\)
b)Cm:DB.DC=DA.DE và EB.EC
c)Cm:\(AD^2\)=AB.AC-DB.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) tự làm nhé ==* chưa làm được
Gọi F là tiếp điểm của đường tròn (I) với BC.
Theo tính chất của hai tiếp tuyến cắt nhau, ta có:
AE = AD
BE = BF
CD = CF
Mà: AE = AB – BE
AD = AC – CD
Nên: AE + AD = ( AB – BE ) + ( AC – CD ) = AB + AC – ( BE + CD )
= AB + AC – (BF + CF) = AB + AC – BC
Suy ra: AE + AD = c + b – a
Hay: AE = AD = \(\frac{\left(c+b-a\right)}{2}\)
a, ta có góc FCD=90°; FED=90°( góc nội tiếp chắn 1/2 đtròn )
xét tứ giác FCDE có góc FCD+FED=90°+90°=180°
suy ra FCDE nội tiếp
b,xét hai tam giác CED và ABD có
góc CDE=ADB( đđ )
góc ECD=DAB=1/2sđ cung EB( góc nội tiếp chắn cung EB)
suy ra hai tam giác đó đồng dạng
suy ra DE/DB=DC/AD
suy ra DE.DA=DB.DC(đpcm)
c, ta có góc CDF=CEF( góc nội tiếp cùng chắn cung CF)(1)
góc CED=CBA( góc nội tiếp chắn cung CA)(2)
góc CDF=DCI( tam giác CID cân tại I)(3)
góc OCB=CBO( tam giác OCB cân tại O)(4)
từ 1,3 suy ra góc CEF=DCI(5)
từ2,4 suy ra OCB=CEA(6)
mà góc CEF+CEA=90°(7)
từ 5,6,7 suy ra góc DCI+OCB=90°
suy ra CI là tiếp tuyến của (O)(đpcm)
a: góc ACB=góc AEB=1/2*180=90 độ
=>CB vuông góc FA,AE vuông góc FB
góc FCD+góc FED=180 độ
=>FCDE nội tiếp
b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có
góc CDA=góc EDB
=>ΔDCA đồng dạng với ΔDEB
=>DC/DE=DA/DB
=>DA*DE=DB*DC
câu a chắc sai đề rồi bạn.
b. xét tam giác CDA và tam giác EDB:
góc CDA = góc EDB (hai góc đối đỉnh)
góc CAE = góc EBC (góc nội tiếp cùng chắn cung CE)
do đó: tam giacs CDA đồng dạng tam giác EDB (g-g)
=> CD/ED = DA/DB => CD.DB=ED.DA
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối
c/ Xét tam giác ABF và tam giác AEC ta có :
Góc BAF = góc CAE ( AF là phân giác)
góc ABF = góc AEC ( 2 góc nt chắn cung AC)
=>tam giác ABF đồng dạng tam giác AEC (g-g)
=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF
d/ Xét tam giác ABF và tam giác CFE ta có:
góc ABF = góc FEC ( 2 góc nt chắn cung AC )
góc BAF = góc FCE (2 góc nt chắn cung EB )
=> tam giác ABF đồng dạng tam giác CEF (g-g)
=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE
Ta có AF.AE=AB.AC (cmt)
AF.FE=BF.CF (cmt)
=> AF.AE-AF.FE = AB.AC - BF.CF
=> AF(AE-FE) = AB.AC - BF.CF
=> \(AF^2=AB.AC-BF.CF\)
a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)
b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)
c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)