Cho tam giác ABC nội tiếp (O) có cung BC=\(120^o\).tia phân giác \(\widehat{A}\) cắt BC tại D,cắt đường tròn tại E.
a)Tính số đo \(\widehat{A}\)
b)Cm:DB.DC=DA.DE và EB.EC
c)Cm:\(AD^2\)=AB.AC-DB.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) tự làm nhé ==* chưa làm được
Gọi F là tiếp điểm của đường tròn (I) với BC.
Theo tính chất của hai tiếp tuyến cắt nhau, ta có:
AE = AD
BE = BF
CD = CF
Mà: AE = AB – BE
AD = AC – CD
Nên: AE + AD = ( AB – BE ) + ( AC – CD ) = AB + AC – ( BE + CD )
= AB + AC – (BF + CF) = AB + AC – BC
Suy ra: AE + AD = c + b – a
Hay: AE = AD = \(\frac{\left(c+b-a\right)}{2}\)
a, ta có góc FCD=90°; FED=90°( góc nội tiếp chắn 1/2 đtròn )
xét tứ giác FCDE có góc FCD+FED=90°+90°=180°
suy ra FCDE nội tiếp
b,xét hai tam giác CED và ABD có
góc CDE=ADB( đđ )
góc ECD=DAB=1/2sđ cung EB( góc nội tiếp chắn cung EB)
suy ra hai tam giác đó đồng dạng
suy ra DE/DB=DC/AD
suy ra DE.DA=DB.DC(đpcm)
c, ta có góc CDF=CEF( góc nội tiếp cùng chắn cung CF)(1)
góc CED=CBA( góc nội tiếp chắn cung CA)(2)
góc CDF=DCI( tam giác CID cân tại I)(3)
góc OCB=CBO( tam giác OCB cân tại O)(4)
từ 1,3 suy ra góc CEF=DCI(5)
từ2,4 suy ra OCB=CEA(6)
mà góc CEF+CEA=90°(7)
từ 5,6,7 suy ra góc DCI+OCB=90°
suy ra CI là tiếp tuyến của (O)(đpcm)
a: góc ACB=góc AEB=1/2*180=90 độ
=>CB vuông góc FA,AE vuông góc FB
góc FCD+góc FED=180 độ
=>FCDE nội tiếp
b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có
góc CDA=góc EDB
=>ΔDCA đồng dạng với ΔDEB
=>DC/DE=DA/DB
=>DA*DE=DB*DC
Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối
c/ Xét tam giác ABF và tam giác AEC ta có :
Góc BAF = góc CAE ( AF là phân giác)
góc ABF = góc AEC ( 2 góc nt chắn cung AC)
=>tam giác ABF đồng dạng tam giác AEC (g-g)
=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF
d/ Xét tam giác ABF và tam giác CFE ta có:
góc ABF = góc FEC ( 2 góc nt chắn cung AC )
góc BAF = góc FCE (2 góc nt chắn cung EB )
=> tam giác ABF đồng dạng tam giác CEF (g-g)
=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE
Ta có AF.AE=AB.AC (cmt)
AF.FE=BF.CF (cmt)
=> AF.AE-AF.FE = AB.AC - BF.CF
=> AF(AE-FE) = AB.AC - BF.CF
=> \(AF^2=AB.AC-BF.CF\)
a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)
b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)
c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)
câu a chắc sai đề rồi bạn.
b. xét tam giác CDA và tam giác EDB:
góc CDA = góc EDB (hai góc đối đỉnh)
góc CAE = góc EBC (góc nội tiếp cùng chắn cung CE)
do đó: tam giacs CDA đồng dạng tam giác EDB (g-g)
=> CD/ED = DA/DB => CD.DB=ED.DA