K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2020

\(M=4x^2+y^2+1+4xy+4x+2y+6x^2-6x+1\)

\(M=\left(2x+y+1\right)^2+6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-\frac{1}{2}=0\\2x+y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-2\end{matrix}\right.\)

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

12 tháng 5 2022

Thay x = 1 và y = -2 ta có

12 -2.1.(-2) - (-2)2 + 4.1 .(-2)

= 1 - 2.1. (-2) - 4 + 4.1.(-2)

= 1 - (-4) - 4 + (-8)

= -7

12 tháng 5 2022

`x^2 - 2xy - y^2 + 4xy`

`= x^2 + ( 4xy-2xy)-y^2`

`= x^2 + 2xy -y^2` `(***)`

Thay `x=1;y=2` vào `(***)` được `:`

`1^2 + 2*1*(-2) - (-2)^2`

`= -7` 

 

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Giải:

A=|x-2|+|y+5|-15

Xét thấy: |x-2|+|y+5| > hoặc = 0 với mọi x

=>|x-2|+|y+5|-15 > hoặc = 0-15

          A > hoặc = -15

A nhỏ nhất = -15 khi và chỉ khi:

|x-2|+|y+5|=0

=> x-2=0 và y+5=0

        x=2 và y=-5

Vậy (x;y)=(2;-5)

Chúc bạn học tốt!

à quên cái dòng ''xét thấy'' là với mọi x và y nha bạn, mk quên ghi đấy!khocroi

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1