Chứng minh rằng :
\(a^4+b^4\le\frac{a^6}{b^2}+\frac{b^6}{a^2}\) với \(a,b\ne0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
ta sẽ chứng minh với mọi x,y luôn có \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\)(*)
thật vậy, (*) tương đương với \(\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\), luôn đúng
khi đó áp dụng (*) ta được
\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\)(đpcm)
dấu đẳng thức xảy ra khi và chỉ khi a=b
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
ta có
\(a^4b^2\ge2\sqrt{a^4b^2}=2a^2b\)\(=>\frac{a}{a^4+b^2}\le\frac{a}{2a^2b}=\frac{1}{2ab}\)
tương tự ta có
\(\frac{b}{b^4+a^2}\le\frac{1}{2ab}\)
\(=>\frac{a}{a^4+b^2}+\frac{b}{b^4+a^2}\le\frac{1}{2ab}+\frac{1}{2ab}=\frac{1}{ab}\)
dấu = xảy ra khi \(\hept{\begin{cases}a^4=b^2\\a^2=b^4\end{cases}=>a^2=b^2=1}\)
Ta có : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4=\left(\frac{a}{b}+\frac{b}{a}\right)^2-2-3\left(\frac{a}{b}+\frac{b}{a}\right)+4\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)^2-3\left(\frac{a}{b}+\frac{b}{a}\right)+2=\left(\frac{a}{b}+\frac{b}{a}-2\right)\left(\frac{a}{b}+\frac{b}{a}-1\right)\)
Ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\), với mọi a, b \(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2\ge0\); \(\frac{a}{b}+\frac{b}{a}-1\ge1\)
Từ đó suy ra đpcm
Áp dụng BĐT AM - GM \(\hept{\begin{cases}\frac{b^6}{a^2}+a^2b^2\ge2b^4\\\frac{b^6}{a^2}+a^2b^2\ge2a^4\end{cases}}\Rightarrow\frac{b^6}{a^2}+\frac{a^6}{b^2}\ge2b^4+2a^4+2a^2b^2\)
Ta lại có: \(2\left(a^4+b^4\right)-2a^2b^2\ge a^4+b^4\)
\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4\left(đpcm\right)\)
\(\text{Ta có: a;b}\ne0\text{ nên:}\frac{a^6}{b^2};\frac{b^6}{a^2};a^4;b^4>0\)
\(\text{Áp dụng bất đẳng thức cô si ta có: }\)
\(\hept{\begin{cases}\frac{a^6}{b^2}+\frac{a^6}{b^2}+b^4\ge3\sqrt[3]{\frac{a^{12}.b^4}{b^4}}=3a^4\\\frac{b^6}{a^2}+\frac{b^6}{a^2}+a^4\ge3\sqrt[3]{\frac{b^{12}.a^4}{a^4}}=3b^4\end{cases}}\)
\(\Rightarrow2VP\ge2VT\Leftrightarrow VP\ge VT\left(\text{điều phải chứng minh}\right)\)