K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\\ \frac{1}{3^2}< \frac{1}{2\cdot3}\\ \frac{1}{4^2}< \frac{1}{3\cdot4}\\ ...\\ \frac{1}{n^2}< \frac{1}{\left(n-1\right)\cdot n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\left(\text{với }n\in N;n\ge2\right)\)

6 tháng 2 2020

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right).2n}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{4n}\)

\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}.\)

\(\Rightarrow A< \frac{1}{4}\left(đpcm\right)\left(n\in N;n\ge2\right).\)

Chúc bạn học tốt!

9 tháng 8 2016

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n}\)

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{n-1}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{n-1}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n}\right)\)

\(A=1-\frac{1}{2^n}< 1\)với mọi n -->Đpcm

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j

9 tháng 4 2019

Ta có: \(S=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}=1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}\)

Đặt \(M=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2019!}\)

\(\Rightarrow M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow M< 1-\frac{1}{2019}=\frac{2019}{2019}-\frac{1}{2019}=\frac{2018}{2019}\)

\(\Rightarrow S< 1+\frac{2018}{2019}=\frac{2019}{2019}+\frac{2018}{2019}=\frac{4037}{2019}< 2\)

\(\Rightarrow S< 2\) ( ĐPCM )

23 tháng 5 2018

Làm theo cách của Trắng nha , 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\left(Đpcm\right)\)

23 tháng 5 2018

Ta có:  \(\frac{1}{2^2}=\frac{1}{2^2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ...................

             \(\frac{1}{2019^2}< \frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)

\(=\frac{1}{4}+\frac{2}{4}-\frac{1}{2019}\)

\(=\frac{3}{4}-\frac{1}{2019}\)\(< \frac{3}{4}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)

                                              Điều phải chứng minh

10 tháng 4 2017

VÌ \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2};\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3};...........;\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{99\cdot100}\)

\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}< 1\)\(\Rightarrow S< 1\)

VÌ \(\frac{1}{2\cdot3}< \frac{1}{2\cdot2};.....;\frac{1}{98\cdot99}< \frac{1}{99\cdot99}\)

\(\Rightarrow\)\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+......+\frac{1}{98\cdot99}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}< S\)

\(\Rightarrow\frac{49}{100}< S< 1\)

\(K\)\(mk\)\(nha\)

22 tháng 5 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2019^2}\)

\(\Rightarrow A=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}=\frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\)

\(\Rightarrow A< \frac{3}{4}\)

22 tháng 5 2018

đặt A=1/2^2+....+1/2019^2

vì 1/2^2+....+1/2019^2<1/1.2+1/2.3+....+1/2018.2019

=> A<1/1-1/2+1/2-1/3+.....+1/2018-1/2019

=> A<1-1/2019=2018/2019<3/4.

=> A<3/4. 

vậy 1/2^2+....+1/2019^2<3/4