CHO M =\(2^0+2^2+2^4+2^6+.+2^{2018}\)
TÌM SỐ DƯ KHI M CHIA CHO 7
HELP ME !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là x
ta có \(\hept{\begin{cases}x+1\text{ chia hết cho 2,3,4,5,6}\\x\text{ chia hết cho 7}\end{cases}}\) vậy x +1 là bội của 60 và x là bội của 7
\(\Rightarrow\hept{\begin{cases}x=60k-1\\x=7h\end{cases}\Leftrightarrow60k-1=7h\Leftrightarrow60\left(k-2\right)=7\left(h-17\right)}\)
vậy k-2 là bội của 7 , và giá trị nhỏ nhất của k là 2
Vậy giá trị nhỏ nhất của x là \(2\times60-1=119\)
Gọi số đó là a (9 < a < 100). Vì a chia 2 dư 1, chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 6 dư 5 nên a + 1 \(⋮\) 2, 3, 4, 5 và 6
Mà 9 < a < 100 \(\Rightarrow\) 10 < a + 1 < 101. 10 < a + 1 < 101; a + 1 \(⋮\) 2, 3, 4, 5 và 6 và a + 1 bé nhất nên a + 1 = 60. \(\Rightarrow\) a = 59
Vậy, số cần tìm là 59
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
Ta có : \(S=1+2+2^2+2^3+...+2^{2018}\)
= \(\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...\left(2^{2016}+2^{2017}+2^{2018}\right)\)
= \(\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...2^{2016}\left(1+2+2^2\right)\)
= \(\left(1+2+2^2\right)\left(1+2^3+2^6+...2^{2016}\right)\)
= \(7\left(1+2^3+2^6+...+2^{2016}\right)\)\(⋮7\)
Vậy S:7 dư 0
\(M=2^0+2^2+2^4+2^6+2^8+...+2^{2018}\)
\(M=2^0+2^2+\left(2^4+2^6+2^8\right)+...+\left(2^{2014}+2^{2016}+2^{2018}\right)\)
\(M=1+4+2^4.\left(1+2^2+2^4\right)+...+2^{2014}.\left(1+2^2+2^4\right)\)
\(M=5+2^4.21+2^{10}.21+...+2^{2014}.21\)
\(M=5+21.\left(2^4+2^{10}+...+2^{2014}\right)\)
vì \(21.\left(2^4+2^{10}+...+2^{2014}\right)⋮7\)
nên \(M=5+21.\left(2^4+2^{10}+...+2^{2014}\right)\)chia 7 dư 5