K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(ĐKXĐ:x\ne0\)

\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{10}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{x^3-1-x^3-1}{\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{10}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{-2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{10}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{-2x-10}{x\left(x^2-x+1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow-2x-10=0\)

\(\Leftrightarrow x=-5\)

Vậy \(x=-5\)là nghiệm của phương trình.

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

11 tháng 4 2019

Ta có:  x 4  + 2 x 2  – x + 1 = 15 x 2 – x – 35

⇔  x 4  + 2 x 2  – x + 1 - 15 x 2  + x + 35 = 0

⇔  x 4  – 13 x 2  + 36 = 0

Đặt m = x 2 . Điều kiện m ≥ 0

Ta có:  x 4  – 13 x 2  + 36 = 0 ⇔  m 2  – 13m + 36 = 0

∆ = - 13 2  – 4.1.36 = 169 – 144 = 25 > 0

∆ = 25 = 5

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: x 2  = 9 ⇒ x = ± 3

x 2  = 4 ⇒ x =  ± 2

Vậy phương trình đã cho có 4 nghiệm:  x 1  = 3;  x 2  = -3;  x 3  = 2;  x 4  = -2

15 tháng 7 2019

Đáp án B

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

14 tháng 2 2022

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

19 tháng 1 2019

Ta thấy x = 1 không phải nghiệm của phương trình nên nhân 2 vế của phương trình với x - 1 ta có: 

⇔ x = 1(KTM)

Vậy phương trình đã cho vô nghiệm.

d: \(x\left(x+1\right)\left(x^2+x+1\right)=42\left(1\right)\)

=>\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt \(a=x^2+x\)

Phương trình (1) sẽ trở thành \(a\left(a+1\right)=42\)

=>\(a^2+a-42=0\)

=>(a+7)(a-6)=0

=>\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)

mà \(x^2+x+7=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\forall x\)

nên \(x^2+x-6=0\)

=>(x+3)(x-2)=0

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

e: \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\left(2\right)\)

=>\(\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)-297=0\)

=>\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)

Đặt \(b=x^2+4x\)

Phương trình (2) sẽ trở thành \(\left(b-5\right)\left(b-21\right)-297=0\)

=>\(b^2-26b+105-297=0\)

=>\(b^2-26b-192=0\)

=>(b-32)(b+6)=0

=>\(\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)

mà \(x^2+4x+6=\left(x+2\right)^2+2>0\forall x\)

nên \(x^2+4x-32=0\)

=>(x+8)(x-4)=0

=>\(\left[{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)

f: \(x^4-2x^2-144x-1295=0\)

=>\(x^4-7x^3+7x^3-49x^2+47x^2-329x+185x-1295=0\)

=>\(\left(x-7\right)\cdot\left(x^3+7x^2+47x+185\right)=0\)

=>\(\left(x-7\right)\left(x+5\right)\left(x^2+2x+37\right)=0\)

mà \(x^2+2x+37=\left(x+1\right)^2+36>0\forall x\)

nên (x-7)(x+5)=0

=>\(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)