Tìm số nguyên a,b biết a+2ab+2b=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Ta có : \(2a^2+2b^2+2ab-8a-8b+10=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2-8a+16\right)+\left(b^2-8b+16\right)=22\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a-4\right)^2+\left(b-4\right)^2=22\). Dễ thấy \(\left(a+b\right)^2\le22\Rightarrow a+b< \sqrt{22}< \sqrt{16}=4\)
Phân tích : \(22=3^2+3^2+2^2\).
Từ đó chia ra các trường hợp , ta chọn được (a;b) = (1;1) ; (1;2) ; (2;1)
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
kin
kb nha
đề nghị bạn ko đăng câu trả lời linh tinh