K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Vì: \(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\Leftrightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(1\right)\)

Tương tự ta có: \(\frac{a}{bc+1}\le\frac{a}{b+c}\left(2\right)\)

Và: \(\frac{b}{ac+1}\le\frac{b}{a+c}\left(3\right)\)

Từ: \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Mà: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)

24 tháng 10 2019

P/s: Bạn nào đang cần thì tham khảo bài này nhé, cô mình chữa rồi.

Bổ sung ĐK: \(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)

Có: \(0\le a\le b\le1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\\ \Rightarrow1-b-a+ab\ge0\\ \Rightarrow ab+1\ge a+b\\ \Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(\text{vì }c\ge0\right)\)

CMTT ta được \(\frac{a}{bc+1}\le\frac{a}{b+c}\\ \frac{b}{ac+1}\le\frac{b}{a+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a+a}{b+c+a}+\frac{b+b}{a+c+b}+\frac{c+c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 2 2017

Giải:

\(0\leq a,b,c\leq 1\Rightarrow ab,ac,ab\geq abc\)

Do đó mà \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}\)

Giờ chỉ cần chỉ ra \(\frac{a+b+c}{abc+1}\leq 2\). Thật vậy:

Do \(0\leq b,c\leq 1\Rightarrow (b-1)(c-1)\geq 0\Leftrightarrow bc+1\geq b+c\Rightarrow bc+a+1\geq a+b+c\)

Suy ra \( \frac{a+b+c}{abc+1}\leq \frac{bc+a+1}{abc+1}=\frac{bc+a-2abc-1}{abc+1}+2=\frac{(bc-1)(1-a)-abc}{abc+1}+2\)

Ta có \(\left\{\begin{matrix}bc\le1\\a\le1\\abc\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(bc-1\right)\left(1-a\right)\le1\\-abc\le0\end{matrix}\right.\) \(\Rightarrow \frac{(bc-1)(1-a)-abc}{abc+1}+2\leq 2\Rightarrow \frac{a+b+c}{abc+1}\leq 2\)

Chứng minh hoàn tất

Dấu bằng xảy ra khi \((a,b,c)=(0,1,1)\) và hoán vị.

20 tháng 2 2017

vao cau hoi hay OLM itm

22 tháng 1 2017

Đặt: \(P=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\)

Từ đề bài ta có: \(abc\ge0\)

Ta chứng minh: \(\frac{a}{1+bc}\le\frac{2a}{2+abc}\)

\(\Leftrightarrow2a+a^2bc\le2a+2abc\)

\(\Leftrightarrow abc\left(2-a\right)\ge0\)(đúng)

Tương tự ta có:

\(\frac{b}{1+ac}\le\frac{2b}{2+abc}\)

\(\frac{c}{1+ab}\le\frac{2c}{2+abc}\)

\(\Rightarrow P\le\frac{2\left(a+b+c\right)}{2+abc}\)

\(\Rightarrow P-2\le\frac{2\left(a+b+c-2-abc\right)}{2+abc}\)

\(=-\frac{2\left(\left(1-a\right)\left(1-b\right)+\left(1-c\right)\left(1-ab\right)\right)}{2+abc}\)

 \(\le0\)(vì \(0\le a\le b\le c\le1\))

\(\Rightarrow P\le2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

23 tháng 1 2017

Từ \(\hept{\begin{cases}a\le1\Rightarrow a-1\le0\\b\le1\Rightarrow b-1\le0\end{cases}}\) suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0\Rightarrow ab+1\ge a+b\Rightarrow2ab+1\ge a+b\left(ab\ge0\right)\)

\(\Rightarrow2ab+2\ge a+b+c\left(1\ge c\right)\)

\(\Rightarrow\frac{1}{2ab+2}\le\frac{1}{a+b+c}\Rightarrow\frac{1}{2\left(ab+1\right)}\le\frac{1}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\).Cộng theo vế ta có:

\(VT\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

quá nhiều ý tưởng mà ko ai vào chém à

4 tháng 3 2018

Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 7 - Học toán với OnlineMath

25 tháng 5 2022

Vì \(0\le a\le b\le c\le1\) nên:

\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)

Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)

Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)

Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)

Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)

25 tháng 5 2022

undefined

vầy hả cj ;-;?