K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

A B C M N D E

Ta có ^MEN = ^NBD + ^MCD = 1800 - ^MAN. Suy ra tứ giác AMEN nội tiếp

Cũng dễ có tứ giác BCMN nội tiếp đường tròn (BC)

Từ đó ^AEM = ^ANM = ^MCB = ^MCD = 1800 - ^MED. Hay ^AEM + ^MED = 1800

Vậy thì A,E,D thẳng hàng (đpcm).

27 tháng 2 2020

Ta có ^BCN = ^BMN ( do tứ giác BNMC nội tiếp )

=> ^NBC = ^AMN  ( cùng phụ với hai góc bằng nhau ) (1)

Mặt khác do BDEN và CDEM là các tứ giác nội tiếp chung cạnh DE

Nên ^NBD + ^MCD = ^NEM  ( tính chất góc ngoài tứ giác nội tiếp )

Mà ^NBD + ^MCD + ^NAM = 1800

Suy ra ^NEM + ^NAM = 1800 .  Vây AMEN nội tiếp

Do đó: ^AMN = ^AEN  (2)

Từ (1) và (2) suy ra ^NBD = ^AEN

Mà ^NBD + ^DEN = 1800 (do BDEN nội tiếp)

Nên ^DEN + ^AEN = 1800  => ^AED=1800 .

Vậy ba điểm A, E, D thẳng hàng (đpcm)

2 tháng 2 2022

bài này mới chữa trên lớp =))

2 tháng 2 2022

r làm đi =)

5 tháng 2 2020

a) Tứ giác BCEF có \(\widehat{BEC}=\widehat{BFC}=90^0\left(gt\right)\)

\(\Rightarrow BCEF\)là tứ giác nội tiếp.

\(\Rightarrow\widehat{C_1}=\widehat{E_1}\)

\(\Delta PBE\)và \(\Delta PFC\)có: \(\widehat{EPC}\)chung; \(\widehat{E_1}=\widehat{C_1}\)

\(\Rightarrow\Delta PBE\)\(\Delta PFC\)(g.g)

\(\Rightarrow\frac{PB}{PF}=\frac{PE}{PC}\Rightarrow PB.PC=PE.PF\)

Tứ giác BDHF có \(\widehat{BDH}=\widehat{BFH}=90^0\)(gt)

\(\widehat{BDH}+\widehat{BFH}=180^0\)

\(\Rightarrow\)BDHF là tứ giác nội tiếp.

\(\Rightarrow\widehat{B_1}=\widehat{F_1}\)

Gọi J là trung điểm của AH. Dễ thấy \(\Delta HEF\)nội tiếp đường tròn \(\left(J;\frac{AH}{2}\right)\)

Tứ giác HEKF nội tiếp đường tròn (J)

\(\Rightarrow\widehat{F_1}=\widehat{HEK}\left(=180^0-\widehat{HFK}\right)\)

Mà \(\widehat{B_1}=\widehat{F_1}\Rightarrow\widehat{B_1}=\widehat{HEK}\)

\(\Rightarrow KE//BC\left(đpcm\right)\)

b) Tứ giác BCEF nội tiếp\(\Rightarrow\widehat{B_1}=\widehat{HFE}\)

Mà \(\widehat{B_1}=\widehat{F_1}\Rightarrow\widehat{DFE}=2\widehat{B_1}\)(1)

\(\Delta EBC\)vuông tại E, đường trung tuyến EI

\(\Rightarrow IB=IE=\frac{1}{2}BC\Rightarrow\Delta IBE\)cân tại I

\(\Rightarrow\widehat{I_1}=2\widehat{B_1}\)(t/c góc ngoài của tam giác)   (2)

Từ (1) và (2) suy ra \(\Rightarrow\widehat{I_1}=\widehat{DFE}\)

\(\Rightarrow DIEF\)là tứ giác nội tiếp.

Dễ chứng minh được \(\Delta PDF\)\(\Delta PEI\left(g.g\right)\)

\(\Rightarrow PD.PI=PE.PF\)

và \(\Delta PHE\)\(\Delta PFQ\left(g.g\right)\)

\(\Rightarrow PE.PF=PH.PQ\)

\(\Rightarrow PD.PI=PH.PQ\Rightarrow\frac{PD}{PQ}=\frac{PH}{PI}\)

\(\Rightarrow\Delta PDH\)\(\Delta PQI\)(c.g.c)\(\Rightarrow\widehat{PHD}=\widehat{PIQ}\)

Lại có \(\widehat{PHD}=\widehat{AHQ}=\widehat{AFQ}\)

\(\Rightarrow BIOF\)là tứ giác nội tiếp.

19 tháng 6 2023

               loading...

a, Xét tam giác vuông EBC vuông tại E và  CI = IB

 ⇒ IE = IC = IB (1) ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Xét tam giác vuông BCF vuông tại F và IC =IB 

 ⇒IF = IC = IB (2) (vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền) 

Từ (1) và (2) ta có: 

IE = IF = IB = IC 

Vậy bốn điểm B, C, E, F cùng thuộc một đường tròn tâm I bán kính bằng \(\dfrac{1}{2}\) BC (đpcm)

b, Xét \(\Delta\)AFC và \(\Delta\)AEB có:

\(\widehat{CAF}\)  chung ; \(\widehat{AFC}\) = \(\widehat{AEB}\) = 900 

⇒ \(\Delta\)AFC  \(\sim\) \(\Delta\)AEB   (g-g)

⇒ \(\dfrac{AF}{AE}\) = \(\dfrac{AC}{AB}\) (theo định nghĩa hai tam giác đồng dạng)

⇒AB.AF = AC.AE (đpcm)

Xét tam giác vuông AEH vuông tại E và KA = KH 

⇒ KE = KH ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

\(\Delta\)EKH cân tại K ⇒ \(\widehat{KEH}\) = \(\widehat{EHK}\) 

\(\widehat{EHK}\) = \(\widehat{DHB}\) (vì hai góc đối đỉnh)

 ⇒ \(\widehat{KEH}\) = \(\widehat{DHB}\) ( tc bắc cầu) (3)

Theo (1) ta có: IE = IB ⇒ \(\Delta\) IEB cân tại I 

⇒ \(\widehat{IEB}\) = \(\widehat{IBE}\)  (4)

Cộng vế với vế của (3) và(4)

Ta có: \(\widehat{KEI}\) = \(\widehat{KEH}\) + \(\widehat{IEB}\) =  \(\widehat{DHB}\) + \(\widehat{IBE}\)  = \(\widehat{DHB}\) + \(\widehat{DBH}\)

        Vì tam giác DHB vuông tại D nên \(\widehat{DHB}\) + \(\widehat{DBH}\)  = 1800 - 900 = 900

 ⇒\(\widehat{KEI}\)  = 900

         IE \(\perp\) KE (đpcm)